• Title/Summary/Keyword: $H_{\infty}$ control scheme

Search Result 43, Processing Time 0.028 seconds

$H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload (미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

$H_{\infty}$ Robust Yaw-Moment Control Based on Brake Switching for the Enhancement of Vehicle Performance and Stability (차량 성능 및 안정성 향상을 위한 $H_{\infty}$ 요 모멘트 강인제어)

  • Ahn, Woo-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1899-1909
    • /
    • 2000
  • This paper proposes a new $H_{\infty}$ yaw moment control scheme using brake torque switching for improving vehicle performance and stability especially in high speed driving. In the scheme, one wheel is selected, depending on the vehicle states, at which a brake torque for control is applied. Steering angles are modeled as a disturbance to the system and the $H_{\infty}$ controller is designed to minimize the difference between the performance of the vehicle and that of the desired model. Its performance robustness as well as stability robustness to system parameter variations is assured through ${\mu}$-analysis. Various simulations with a nonlinear 8-DOF vehicle model show that proposed controller enhances the vehicle performance and stability under disturbances and parameter variations as well as under the normal driving condition.

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

$H^{\infty}$ robust adaptive controller design with parameter uncertainty, unmodeled dynamic and bounded noise (파라미터 불확실성,모델 불확실성,한계 잡음에 대한 $H^{\infty}$ 적응제어기 설계)

  • Baek, Nam-Seok;Yang, Won-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.454-456
    • /
    • 1998
  • Traditional adaptive control algorithms are not robust to dynamic uncertainties. The adaptive control algorithms developed previously to deal with dynamic uncertainties do not facilitate quantitative design. We proposed a new robust adaptive control algorithms consists of an $H^{\infty}$ suboptimal control law and a robust parameter estimator. Numerical examples showing the effectiveness of the $H^{\infty}$ adaptive scheme are provided.

  • PDF

Robust $H_{\infty}$ Power Control for CDMA Systems in User-Centric and Network-Centric Manners

  • Zhao, Nan;Wu, Zhilu;Zhao, Yaqin;Quan, Taifan
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.399-407
    • /
    • 2009
  • In this paper, we present a robust $H_{\infty}$ distributed power control scheme for wireless CDMA communication systems. The proposed scheme is obtained by optimizing an objective function consisting of the user's performance degradation and the network interference, and it enables a user to address various user-centric and network-centric objectives by updating power in either a greedy or energy efficient manner. The control law is fully distributed in the sense that only its own channel variation needs to be estimated for each user. The proposed scheme is robust to channel fading due to the immediate decision of the power allocation of the next time step based on the estimations from the $H_{\infty}$ filter. Simulation results demonstrate the robustness of the scheme to the uncertainties of the channel and the excellent performance and versatility of the scheme with users adapting transmit power either in a user-centric or a network-centric efficient manner.

Robust Power Control for Cognitive Radio in Spectrum Underlay Networks

  • Zhao, Nan;Sun, Hongjian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1214-1229
    • /
    • 2011
  • Power control is a key technique in spectrum underlay cognitive network to guarantee the interference temperature limit of the primary users (PUs) and the quality of service of the secondary users (SUs). In this paper, a robust power control scheme via link gain pricing with $H_{\infty}$ estimator is proposed. The scheme guarantees the interference temperature of the PUs through operating in the network-centric manner, and keeps the fairness between the SUs through link gain pricing. Furthermore, the $H_{\infty}$ filter is also used in the proposed scheme to estimate the channel variation, and thus the power control scheme is robust to the severe channel fading. Plenty of simulations are taken, and prove its superior robust performance against the channel fading, and its effectiveness in guaranteeing the interference temperature limit of the PUs.

A Study on the Robust Position Control of Single-rod Hydraulic System (편로드 유압시스템의 강인 위치제어에 관한 연구)

  • Cho, Taik-Dong;Seo, Song-Ho;Yang, Sang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.128-135
    • /
    • 1999
  • A driving simulators of aircraft and vehicle may consist of hydraulic power systems with many single-rod cylinders. The single-rod hydraulic systems are convenient but need more robust control scheme in order to achieve a reliable performance against the wide range of operating disturbances and the inherent model uncertainties. $H_{\infty}$ control scheme was implemented to the 2 degree-of-freedom hydraulic device similar to the simple driving simulator. With the reasonable disturbances from sensor, base and pump and also with the linearization of model, the simulation and experimental results showed good agreements.

  • PDF

Teleoperation Controller Design for an Underwater Manipulator Using an $H_{\infty}$ Control Scheme Based on Disturbance Observer (외란관측기를 바탕으로 $H_{\infty}$제어 방법을 이용한 수중 로봇 팔의 원격조종 제어기 설계)

  • Ryu, Jee-Hwan;Kwon, Dong-Soo;Lee, Pan-Moon;Hong, Seok-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.578-585
    • /
    • 2000
  • This paper presents a robust and systematic bilateral controller design method for a teleoperation of an underwater manipulator. Disturbance observer is used as a local controller of the master and underwater slave manipulator to set up the teleoperation system as a nominal model by compensating coupled nonlinear terms model uncertainties and external disturbances in the water. Using the linearized master/slave model a $H_{\infty}$ optimal control scheme is applied to systematically construct a force reflecting bilateral controller.

  • PDF

Mixed $H_2/H_{\infty}$ Control of Two-wheel Mobile Robot

  • Roh, Chi-Won;Lee, Ja-Sung;Lee, Kwang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.438-443
    • /
    • 2003
  • In this paper, we propose a control algorithm for two-wheel mobile robot that can move the rider to his or her command and autonomously keep its balance. The control algorithm is based on a mixed $H_2/H_{\infty}$ control scheme. In this control problem the main issue is to move the rider while keeping its balance in the presence of disturbances and parameter uncertainties. The disturbance force caused by uneven road surfaces and the uncertainty due to different rider's heights are considered. To this end we first consider a state feedback controller as a basic framework. Secondly, we obtain the state feedback gain $K_2$ minimizing the $H_2$ norm and the state feedback gain $K_{\infty}$ minimizing the $H_{\infty}$ norm over the whole range of parameter uncertainty. Finally, we select mixed $H_2$/$H_{\infty}$ state feedback controller K as the geometric mean of $K_2$ and $K_{\infty}$. Simulation results show that the mixed $H_2/H_{\infty}$ state feedback controller combines the effects of the optimal $H_2$ state feedback controller and robust $H_{\infty}$ controller state feedback controller efficiently in the presence of disturbance and parameter uncertainty.

  • PDF

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF