• Title/Summary/Keyword: $H{\infty}$ Control

Search Result 704, Processing Time 0.03 seconds

Weighted Integral H Control of Induction Motor using T-S fuzzy (T-S 퍼지를 사용한 유도전동기의 가중적분 H 제어)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyong;Ahn, Ho-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1399-1408
    • /
    • 2013
  • This paper proposes a new $H_{\infty}$ T-S fuzzy controller with a novel integral control for induction motors which have nonlinear dynamics. The $H_{\infty}$ T-S fuzzy controller is used for the nonlinearity and robustness and weighted integral is used for tracking problem and control performance. A T-S Fuzzy controller is the fuzzy combination of local linear controllers considering the overall stability, and LMI(Linear Matrix Inequlity) is used for determining the gains of linear controllers. The tracking problem of an induction motor is changed into regulator problem by introducing the integral control technique with weighting factor, diminishing the conservatism of $H_{\infty}$ T-S fuzzy controller.

Mixed $H_2$/$H_{\infty}$ Output Feedback Controller Design for Time-Delayed System (시간지연 시스템에 대한 혼합 $H_2$/$H_{\infty}$ 출력궤환 제어기 설계)

  • 양혜진;김종해;조용철;박흥배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.331-331
    • /
    • 2000
  • This paper presents the mixed $H_2/H_{\infty}$ output feedback controIler design method for linear systems with delayed state. The objective is to design the output feedback controller which minimizes the H$_2$-norm of one transfer function while ensuring the H$_{\infty}$-norm of the other is held below a chosen level. When objective is tormulated in terms of a common Lyapunov function, the sufficient conditions of existence of mixed $H_2/H_{\infty}$ controller are given in terms of LMIs. terms of LMIs.

  • PDF

[ $H_2/H_{\infty}$ ] FIR Filters for Discrete-time State Space Models

  • Lee Young-Sam;Han Soo-Hee;Kwon Wook-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.645-652
    • /
    • 2006
  • In this paper a new type of filter, called the $H_2/H_{\infty}$ FIR filter, is proposed for discrete-time state space signal models. The proposed filter requires linearity, unbiased property, FIR structure, and independence of the initial state information in addition to the performance criteria in both $H_2$ and $H_{infty}$ sense. It is shown that $H_2,\;H_{\infty}$, and $H_2/H_{\infty}$ FIR filter design problems can be converted into convex programming problems via linear matrix inequalities (LMIs) with a linear equality constraint. Simulation studies illustrate that the proposed FIR filter is more robust against temporary uncertainties and has faster convergence than the conventional IIR filters.

Robust $H^{\infty}$ control for parameter uncertain time-varying systems with time-varying delays in state and control input (파라미터 불확실성 시변 시간지연 시스템에 대한 견실 $H^{\infty}$ 제어)

  • 김기태;김종해;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.113-116
    • /
    • 1997
  • In this paper, we present a robust $H^{\infty}$ controller design method for parameter uncertain time-varying systems with disturbance and that have time-varying delays in both state and control. It is found that the problem shares the same formulation with the $H^{\infty}$ control problem for systems without uncertainty. Through a certain differential Riccati inequality approach, a class of stabilizing continuous controller is proposed. For parameter uncertainties, disturbance and time varying delays, proposed controllers the plant and guarantee an $H^{\infty}$ norm bound constraint on disturbance attenuation for all admissible uncertainties. Finally a numerical example is given to demonstrate the validity of the results.ts.

  • PDF

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF

H(sub)$\infty$ Design for Decoupling Controllers Based on the Two-Degree-of-Freedom Standard Model Using LMI Methods (LMI 기법을 이용한 2자유도 표준모델에 대한 비결합 제어기의 H(sub)$\infty$ 설계)

  • Gang, Gi-Won;Lee, Jong-Sung;Park, Kiheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.183-192
    • /
    • 2001
  • In this paper, the decoupling H(sub)$\infty$ controller which minimizes the maximum energy in the output signal is designed to reduce the coupling properties between the input/output variables which make it difficult to control a system efficiently. The state-space formulas corresponding to the existing transfer matrix formulas of the controller are derived for computational efficiency. And for a given decoupling $H_{\infty}$ problem, an efficient method are sought to find the controller coefficients through the LMI(Linear Matrix Inequalities) method by which the problem is formulated into a convex optimization problem.

  • PDF

Modeling and $H_{\infty}$ Optimal Control Design for a Hydraulic Unit in ESP (ESP 유압 유니트의 모델링 및 $H_{\infty}$ 최적제어)

  • You, Seung-Han;Hahn, Jin-Oh;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.733-738
    • /
    • 2004
  • This paper deals with feedback control of a hydraulic unit for direct yaw moment control, a method used to actively maintain the dynamic stability of an automobile. The uncertain parameters and complex structure naturally call for empirical modeling of the hydraulic unit, which readily results in a control-oriented model with high fidelity. The identified model is cross-validated against experimental data under various conditions, which helps to establish model uncertainty. Then, the $H_{\infty}$ optimization technique is employed to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. The performance of the synthesized controller is verified using experimental results, which shows the viability of the proposed approach in a real-world application.

  • PDF

Position Control of Electro-Hydraulic Servo System Using $H_\infty$ ($H_\infty$제어에 의한 전기${\cdot}$유압 서보계의 위치제어)

  • Park K. S.;Kim D. T.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.103-108
    • /
    • 2005
  • In this paper, a controller design procedure for an electro-hydraulic positioning systems have developed using $H_\infty$ control theory. The generalized models and weighting functions for a multiplicative uncertainty modelling error is presented along with $H_\infty$ controller designs in order to investigate the robust stability and performance. The multiplicative uncertainty case is specifically suited for the design of an electro-hydraulic positioning control systems using $H_\infty$ control.

  • PDF

Intervalwise Receding Horizon $H_{\infty}$ Tracking Control for Continuous Linear Periodic Systems (연속 시간 선형 주기 시스템에 대한 주기 예측 구간 $H_{\infty}$ 추적 제어)

  • Kim, Ki-Back;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1140-1142
    • /
    • 1996
  • In this paper, a fixed-horizon $H_{\infty}$ tracking control (HTC) for continuous time-varying systems is proposed in state-feedback case. The solution is obtained via the dynamic game theory. From HTC, an intervalwise receding horizon $H_{\infty}$ tracking control (IHTC) for continuous periodic systems is obtained using the intervalwise strategy. The conditions under which IHTC stabilizes the closed-loop system are proposed. Under proposed stability conditions, it is shown that IHTC guarantees the $H_{\infty}$-norm bound.

  • PDF