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Abstract

In this paper, a fixed-horizon H,, tracking control
(HTC) for continuous time-varying systems is proposed
in state-feedback case. The solution is obtained via the
dynamic game theory. From HTC, an intervalwise re-
ceding horizon Hy, tracking control (IHTC) for contin-
uous periodic systems is obtained using the intervalwise
strategy. The conditions under which IHTC stabilizes '
the closed-loop system are proposed. Under proposed
stability conditions, it is shown that IHTC guarantees

the Hy-norm bound.

1 Introduction

The receding horizon control strategy has been developed asl.
a proper control strategy for tracking performance and time-
varying systems. It is well known that this strategy presents
more practical aspects in the applications to real systems than
the infinite horizon control strategy, because it needs only in-
formations for only a finite future time. The receding hori-
zon strategy is obtaining a solution to optimize a finite future
cost horizon. There are two receding horizon strategies, the
pointwise and intervalwise one. As well shown in [2], in the
pointwise strategy, the terminal point of a fixed-length finite
cost horizon continuously recedes at each time inst';ant. In the
intervalwise strategy the terminal point is kept fixed for a pe-
riod of finite cost horizon and, after one period, the terminal
point moves by one period and fixed during the next period.
In the aspect of computational load, the intervalwise strat-
egy is superior to the other one since the intervalwise one
requires calculation of control gain per a period of every cost
horizon while the other one requires'it per every time instant.
The pointwise strategy has been developed for general time-
varying systems [5], [6], (7], and the intervalwise strategy only

for periodic and time-invariant systems [1], (2], [9]-

There has been a few studies on the receding horizon track-
ing problems and its stability property in the H,, problem.
In order to obtain the receding horizon tracking control, the
tracking contrlol for a fixed finite cost horizon shoﬁld be ob-
tained at first. Very recently, in [3], an Hy tracking control for
a finite cost horizon was proposed in continuous systems. In
{7), the stability conditions for continuous systems were pro-
posed using the pointwise strategy. But the intervalwise reced-

ing horizon strategy has not been investigated in the tracking
problems and the H,, problem to author’s knowledge.

In this paper, an intervalwise receding horizon Hy-tracking
control (IHTC) for continuous periodic systems is proposed.
Our fixed finite horizon H,, tracking control (HTC) which is
first obtained to derive IHTC is different from that of [5). The
solution (HTC) is obtained via the dynamic game theory as
shown in [4]. The conditions under which closed loop stabil-
ity and infinite horizon Hy-norm bound are quaranteed with
IHTC are proposed, respectively.

This paper is organized as follows. In Section 2, HTC for
continuous time-varying systems is derived in state-feedback
case. In Section 3, a stabilizing IHTC for continuous periodic
systems is proposed. In Section 4, it is also shown that the
stabilizing IH'I:C guarantees the Hy-norm bound. Finally, our

conclusions follow in Section 5.

2 Hy-tracking control

We derive a finite horizon H.-tracking control (HTC) using
the previous result {4] in which only the regulation problem
is dealt with. Consider the following discrete time-varying
systém:

() = Alt)z(t) + Bi(t)w(t) + By(t)u(t), =(0)=0 (1)
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() = C(t)=(t) a(t)= wn(t)
u(t) 0

where
z(t) € R*, u(t)e R®, w(t)e R, z2(t) e RP™

and the finite horizon cost index with the finite terminal weight-

ing matrix F > 0:

J(z,,u.w) = {z(tf) - z,(t;)]TF[z(t;) - z,(t;)] +
L0 - =@ - el @

where the tracking commands yr(1), y»(2), - -+, y-(N) are as-
sumed -to be available over the future horizon N. In the fol-
lowing theorem, we introduce the existing result on the fi-
nite horizon He-regulation problem where the tracking com-
mands y,(t} = 0 for V&. From now on, we substitute B, with
B,=v"'By. At first, we introduce the following Riccati differ-
ential equation (RDE)

=Z(t) = Z@AR) + AT()Z(t) + Q(t) - Z(t)[Ba(t) B ()
~B,WBLWIZ0): Z2t)=q; @)
and
56t = inf{y>0:The RDE (3) does not have

a conjugate point on 0,t/]} (4)

Theorem 1 /4], For the linear-quadratic zero-sum differ-
ential game with closed-loop information structure, de-
fined on the time interval [0,t;], let the parameter 5CL be
as defined by (§). Then if y>3°L, the differential game
admits a unique feedback saddle-point solution, which is

given by

u*(t)

il

~BJ(t)Z(t)x(t)

w'(t)

it

2B (H)Z(t)x(t), =°(0) = =(0)

Now we can derive HTC for continuous systems using the

above result as follows:

Theorem 2 Then, the differential game for (1) admits o

unique feedback saddle-point solution, which is given by

w'{t) ~BI (t){Z()z(t) + g(t)] (5)
w'(t) = 77BY[Z(t)(t) + o(t)] (6)

where
-5ty = AT(t)glt) ~ Z(6)[Ba(t)BY (t) ~ By () BT (t)]g(2)

=CT(t)y.(1)

olty) = ~CT(t))Fy.(ty)

proof: The proof procedures are almost the same as [8] and
Theorem 2 of [9].

3 Stability of IHTC for continuous pe-

riodic systems

Consider continuous T'—periodic systems. T—periodic systems
mean that A(t + T)=A(t), By(t + T)=Bi(t), Ba(t + T} =
By(t), and C(t + T)=C\(t) for Vt. Consider a generally time-
varying matrix function L{-). The symbol L.(-) will denote a
T-periodic matrix function such that L,(t)=L(t) for r < ¢t <
7+T—1and Lt +T)=L.;(t) forVi > 7.

Here we consider the problem of applying the control (6) to
continuous T-periodic systems with the intervalwise strategy.
We propose an intervalwise receding horizon H-tracking con-
trol (IHTC}) which stabilizes continuous T-periodic systems.
To study the stability of IHTC, we have only to consider the
state feedback gain. Assume that ¢y > T+ 1. Here ¢; is both
the cost horizon and the horizon that the tracking signal is
given. Let the initial point be v and Qy be the fixed value.
Among the solutions obtained over [r,7 + 7], we use the so-
lutions over [r,7 + T}, Next the initial point moves to 7+ T
and the terminal point of the cost horizon moves to 7+ T +t;.
This procedure repeats. Therefore Z(+) is T-periodical.

The periodic Riccati equation is as follows:

“Zepr(t) = ZegrOF() + FL () Zrwar(t) + K7 () Ka(t)
+KT(0)K: (1) + Q(t) (7)

where Fi(t) = A(t) + Ba(t)Kal(t), Kot} = —~BL()Zrxr(h).
Ki(t) = =B (t)Z,ar{t). We define 6{t) used in Theorem 3:

B(t) = Q@)+ Ki(t)Ka(ty + KT ()K1(t)

Theorem 3 Let Z{-) be the solution of {3) for continuous
T-periodic systems, and asswme that

1) Z(8) >0 ontefrr+T]

2) [2Te) >0a

Then, A(:)—Ba(-)BI () Z,47(-) is asymptotically stable for
each k 2 0.

proof:
Zrirlt) = BTV Zrar(rYbg(7) +
' r+T
. f oLt - T)O(OR (tr —T) dt
=1
where
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Yp(r+T,7) F(1-+T—1)F(-r+T—2)~-~v

F(r +1)F(r) (8)

&r(T) Ur(r +T,7) (9)

Let v be an eigenvector of ¢, () associated with the eigen-
value A. Then, Z,x7(7) yields:

7+T

A= PB Zepr(r+ 1w = [ v efer-T)
t=T1

Bty (t,r - T dt

All characteristic multipliers of 5, (1) belong to the open-unit

disk by assumptions. ]

4 The H,-norm bound of the stabilizing
IHTC

Now consider the Hy-norm bound for continuous systems.

Corollary 1 With the stabilizing IHTC u*(t) for contin-
uous systems when z.(-) = 0, the Hx-norm bound of the

closed-loop system is guaranteed.

proof: Proof procedures are almost identical to them of 3.4

in [7]) with P(¢t,t + 7) replaced by Z,,(t). [ ]

5 Conclusion

In this paper, a fixed finite horizon H., tracking control
(HTC) for continuous time-varying systems is first derived.
And then, an intervalwise receding horizon H tracking con-
trol (IHTC) is proposed for continuous periodic systems. It is
shown that the proposed IHTC guarantees closed loop stabil-
ity, infinite horizon Hy, norm bound under the proposed con-
ditions. One of the advantages of the proposed IHTC is that it
extends the previous results on the intervalwise receding hori-
zon control to the tracking controller and the H,, control. An-
other advantage that computation burdens are lessened makes

IHTC easily applied to real-time tracking systems. "
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