• Title/Summary/Keyword: $H^p$ space

Search Result 717, Processing Time 0.025 seconds

SPACE OF HOMEOMORPHISMS UNDER REGULAR TOPOLOGY

  • Mir Aaliya;Sanjay Mishra
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1299-1307
    • /
    • 2023
  • In this paper, we attempt to study several topological properties for the function space H(X), space of self-homeomorphisms on a metric space endowed with the regular topology. We investigate its metrizability and countability and prove their coincidence at X compact. Furthermore, we prove that the space H(X) endowed with the regular topology is a topological group when X is a metric, almost P-space. Moreover, we prove that the homeomorphism spaces of increasing and decreasing functions on ℝ under regular topology are open subspaces of H(ℝ) and are homeomorphic.

ON A PROPERTY OF CONVOLUTION OPERATORS IN THE SPACES $D'_{L^{P'}} p{\geq}1 AND \delta'$

  • Park, D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.91-95
    • /
    • 1984
  • Let D$^{p}$ be the space of distributions of $L^{p}$-growth and S the space of tempered destributions in $R^{n}$: D$^{p}$, 1.leq.P.leq..inf., is the dual of the space $D^{p}$ which we discribe later. We denote by O$_{c}$(S:S') the space of convolution operators in S. In [8] S. Sznajder and Z. Zielezny proved the following necessary conditions for convolution operators in O$_{c}$(S:S) to be solvable in S.

  • PDF

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

NONEXISTENCE OF RICCI-PARALLEL REAL HYPERSURFACES IN P2C OR H2C

  • Kim, Un-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.699-708
    • /
    • 2004
  • Niebergall and Ryan posed many open problems on real hypersurfaces in complex space forms. One of them is "Are there any Ricci-parallel real hypersurfaces in complex projective space $P_2C$ or complex hyperbolic space $H_2C$\ulcorner" The purpose of present paper is to prove the nonexistence of such hypersurfaces.

A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS

  • Stevic Stevo
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.579-591
    • /
    • 2006
  • In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;=\;{\sum}^{\infty}_{k=1}\;P_{nk}(z)$ (the homogeneous polynomial expansion of f) satisfying $n_{k+1}/n_{k}{\ge}{\lambda}>1$ for all $k\;{\in}\;N$, to belong to the weighted Bergman space $$A^p_{\alpha}(B)\;=\;\{f{\mid}{\int}_{B}{\mid}f(z){\mid}^{p}(1-{\mid}z{\mid}^2)^{\alpha}dV(z) < {\infty},\;f{\in}H(B)\}$$. We find a growth estimate for the integral mean $$\({\int}_{{\partial}B}{\mid}f(r{\zeta}){\mid}^pd{\sigma}({\zeta})\)^{1/p}$$, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space $H_{p,q,{\alpha}$(B) and weighted Bergman space on polydisc $A^p_{^{\to}_{\alpha}}(U^n)$ are also given.

On Self-commutator Approximants

  • Duggal, Bhagwati Prashad
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Let B(X) denote the algebra of operators on a complex Banach space X, H(X) = {h ${\in}$ B(X) : h is hermitian}, and J(X) = {x ${\in}$ B(X) : x = $x_1$ + $ix_2$, $x_1$ and $x_2$ ${\in}$ H(X)}. Let ${\delta}_a$ ${\in}$ B(B(X)) denote the derivation ${\delta}_a$ = ax - xa. If J(X) is an algebra and ${\delta}_a^{-1}(0){\subseteq}{\delta}_{a^*}^{-1}(0)$ for some $a{\in}J(X)$, then ${\parallel}a{\parallel}{\leq}{\parallel}a-(x^*x-xx^*){\parallel}$ for all $x{\in}J(X){\cap}{\delta}_a^{-1}(0)$. The cases J(X) = B(H), the algebra of operators on a complex Hilbert space, and J(X) = $C_p$, the von Neumann-Schatten p-class, are considered.

ON A BESOV SPACE AND RADIAL LIMITS

  • Kim, Pil-Lan;Kwon, Ern-Gun;Park, Jong-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.561-564
    • /
    • 2009
  • A holomorphic function space in the unit disc D satisfying $\int_D|f'(z)|^p(1-|z|^2)^{p-1}dA(z)$<$\infty$ is quite close to $H^p$. The problems on the existence of the radial limits are considered for this space. It is proved that the situation for p > 2 is totally different from the situation for p $\leq$ 2.

FIXED POINTS OF A CERTAIN CLASS OF ASYMPTOTICALLY REGULAR MAPPINGS

  • Jung, Jong-Soo;Thakur, Balwant-Singh;Sahu, Daya-Ram
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.729-741
    • /
    • 2000
  • In this paper, we study in Banach spaces the existence of fixed points of asymptotically regular mapping T satisfying: for each x, y in the domain and for n=1, 2,…, $$\parallelT^nx-T^ny\parallel\leq$\leq$a_n\parallelx-y\parallel+b_n (\parallelx-T^nx\parallel+\parallely-T^ny\parallely)$$ where $a_n,\; b_n,\; C_n$ are nonnegative constants satisfying certain conditions. We also establish some fixed point theorems for these mappings in a Hibert space, in L(sup)p spaces, in Hardy space H(sup)p, and in Soboleve space $H^{k,p} for 1<\rho<\infty \; and \; k\geq0$. We extend results from papers [10], [11], and others.

  • PDF

G'p-SPACES FOR MAPS AND HOMOLOGY DECOMPOSITIONS

  • Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.603-614
    • /
    • 2015
  • For a map $p:X{\rightarrow}A$, we define and study a concept of $G^{\prime}_p$-space for a map, which is a generalized one of a G'-space. Any G'-space is a $G^{\prime}_p$-space, but the converse does not hold. In fact, $CP^2$ is a $G^{\prime}_{\delta}$-space, but not a G'-space. It is shown that X is a $G^{\prime}_p$-space if and only if $G^n(X,p,A)=H^n(X)$ for all n. We also obtain some results about $G^{\prime}_p$-spaces and homology decompositions for spaces. As a corollary, we can obtain a dual result of Haslam's result about G-spaces and Postnikov systems.