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ON A BESOV SPACE AND RADIAL LIMITS

Pil Lan Kim, Ern Gun Kwon, and Jong Hee Park

Abstract. A holomorphic function space in the unit disc D satisfyingZ

D
|f ′(z)|p(1− |z|2)p−1 dA(z) < ∞

is quite close to Hp. The problems on the existence of the radial limits
are considered for this space. It is proved that the situation for p > 2 is
totally different from the situation for p ≤ 2.

1. Introduction

Let ABp,p+1 denote the Besov space consisting of holomorphic f in the unit
disc D of he complex plane for which∫

D

|f ′(z)|p(1− |z|2)p−1 dA(z) < ∞.

Here and throughout dA(z) = dxdy, z = x + iy.
We, in this paper, consider the existence of the radial limits of the functions

in ABp,p+1. First, if 0 < p ≤ 2, then by a well-known theorem [4, Theorem XIV-
(3.24)], we have ABp,p+1 ⊂ Hp, where Hp denotes the classical Hardy space
which consists of holomorphic f in D satisfying

‖f‖p :=
(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

< ∞.

Hence f should have radial limits almost everywhere on T = ∂D.
Our question is “What about p > 2 ?” The answer to the question (and

a similar question for Rn+1
+ ) might be known to experts. We settle down the

problem in this paper by a simple method.

Theorem 1.1. Let 2 < p < ∞. Then there is f ∈ ABp,p+1 such that f has
radial limits almost nowhere on T .

So, the situation for p > 2 is totally different from the situation for p ≤ 2.
Moreover, we have:

Received April 10, 2009.
2000 Mathematics Subject Classification. Primary 30H05.
Key words and phrases. radial limits, Besov space.
This work was supported by Andong National University 2006.

c©2009 The Korean Mathematical Society

561



562 PIL LAN KIM, ERN GUN KWON, AND JONG HEE PARK

Corollary 1.2. Let 0 < p < ∞. Then the space ABp,p+1 belongs to the
Nevanlinna class if and only if 0 < p ≤ 2.

See [1, 4] for the Nevanlinna class and Hp. Corollary 1.2 follows directly from
Theorem 1.1 and our proof of Theorem 1.1 is constructive one using several
known facts of the next section.

2. Preliminaries

For a function f holomorphic in D and for 0 ≤ r < 1, we denote

Mp(r, f) =
(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

if 0 < p < ∞ and
M∞(r, f) = sup

0≤θ≤2π
|f(reiθ)|.

For 0 < p ≤ ∞, 0 < q < ∞ and −1 < α < ∞, Ap,q,α denotes the mixed
normed space consisting of holomorphic f in D for which

∫ 1

0

(1− r)αMq(r, f)p dr < ∞.

For 0 < q, r ≤ ∞, we denote by `(q, r) the set of those sequences {ak}∞k=0

for which 



( ∑

k∈Im

|ak|q
)1/q



 ∈ `r (q < ∞)

and {
sup

k∈Im

|ak|
}
∈ `r (q = ∞),

where
Im =

{
k : 2m ≤ k < 2m+1

}
(m = 1, 2, . . .)

and I0 = {0}. `(q, r) forms a normed linear space if 1 ≤ q, r ≤ ∞. For dual
spaces and multipliers between these spaces we refer to [2].

Note that if f(z) =
∑∞

0 akzk is holomorphic in D, then f can be set in one-
to-one correspondence with the sequence {ak}∞k=0. We identify a holomorphic
function with the sequence of its Taylor coefficients.

Theorem 2.1 ([1]). Let a1, a2, . . . be complex numbers such that

lim sup
n→∞

|an|1/n = 1.

(i) If
∑ |an|2 < ∞, then for almost every choice of sign {εn},

f(z) =
∞∑

n=0

εnanzn ∈ Hp for all p < ∞.

(ii) If
∑ |an|2 = ∞, then for almost every choice of sign {εn}, f(z) has a

radial limit almost nowhere.
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Theorem 2.2 ([3]). For 0 < p < ∞, 1 ≤ q ≤ 2 and −1 < α < ∞,

(2.1) Ap,q,α ⊂ I−(α+1)/p `(q′, p),

where q′ is the conjugate exponent of q.

(2.1) means that if f(z) =
∑∞

0 anzn ∈ Ap,q,α, then {n(α+1)/pan}∞0 ∈ `(q′, p).
Of course we have an inclusion reverse to (2.1) by duality.

Theorem 2.3. For 0 < p < ∞, 2 ≤ q ≤ ∞ and −1 < α < ∞,

(2.2) I−(α+1)/p `(q′, p) ⊂ Ap,q,α,

where q′ is the conjugate exponent of q.

3. Proof of Theorem 1.1

For a sequence ε = {εk = ±1}, take

fε(z) =
∞∑

k=1

εk√
k

z2k

, z ∈ D.

Then we have by the harmonic series divergence

∑ ∣∣∣∣
εk√
k

∣∣∣∣
2

=
∑∣∣∣∣

1√
k

∣∣∣∣
2

= ∞.

Since

lim sup
k→∞

∣∣∣∣
1√
k

∣∣∣∣
1
2k

= lim
k→∞

1

k
1
2

1
2k

=
1

elimk→∞ 1
2k+1 ln k

,

we obtain also

lim sup
k→∞

∣∣∣∣
εk√
k

∣∣∣∣
1
2k

= 1.

Thus, by Theorem 2.1, almost every choice of signs ε = {εk}, fε(z) has a radial
limit almost nowhere.

But we are going to show

(3.1)
∫

D

|f ′ε(z)|p(1− |z|2)p−1 dA < ∞

for p > 2, which gives what we want.
In order to verify (3.1), first note that (3.1) is nothing but fε ∈ IAp,p,p−1.

In view of (2.2) we are sufficient to prove that

(3.2) fε ∈ l(p′, p).

Since fε is a gap sequence with
∑ 1

(
√

k)p
< ∞

for p > 2, it follows that fε satisfies (3.2). The proof is complete.
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4. Further question

Of course, there may be many ways to approach the problem on radial limits.
Refining the Besov spaces we considered, we pose a further question: Charac-
terize all the radial function ω(z) such that there is a holomorphic function f
defined on D for which∫

D

|f ′(z)|p ω(z)
dA(z)

1− |z|2 < ∞

but has radial limits almost nowhere on T .
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