• 제목/요약/키워드: $Ga_2O_3$ Substrate

검색결과 159건 처리시간 0.027초

RF-Magnetron Sputtering법을 이용한 IGZO박막의 기판온도에 따른 특성분석 (IGZO Films Using RF-Magnetron Sputtering Method of Analysis of the substrate temperature)

  • 김미선;김동영;배강;손선영;김화민
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.135-135
    • /
    • 2010
  • 본 연구에서는 ZnO를 기반으로 하여 $In_2O_3$, $Ga_2O_3$를 혼합한 IGZO 박막의 물성들을 분석하였다. 광학적 특성 결과 가시광 영역에서 모두 80%이상의 투과율을 나타내었으며, 전기적 특성을 조사한 결과 $In_2O_3:Ga_2O_3$:ZnO (1:9:90 wt.%)의 IGZO박막에서 $1.90{\times}10^{-3}\;\Omega/cm$의 비저항을 확인 할 수 있었다. 또한 상온에서 $400^{\circ}C$로 기판온도에 변화를 주어 실험하였으며, 결정성을 분석하기 위하여 XRD (PANALYTICAL CO.)를 사용하였고, SEM (JEOL CO.) 을 이용하여 IGZO박막의 미세 구조를 확인하였다. UV-ViS spectrophotometer (SHIMADZU CO.) 을 사용하여 광학적 특성을 측정하였으며, Hall effect측정 장비를 이용하여 캐리어 농도 및 Hall이동도 변화에 따른 비저항을 비교 분석하였다.

  • PDF

투명 전도막 응용을 위한 Ga 도핑된 ZnO 박막의 열적 안정성에 관한 연구 (Thermally stability of transparent Ga-doped ZnO thin films for TeO applications)

  • 오상훈;안병두;이충희;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.48-49
    • /
    • 2006
  • Highly conductive and transparent films of Ga-doped ZnO have been prepared by pulsed laser deposition using a ZnO target with 3 wt% ${Ga_2}{O_3}$ dopant. Films with the resistivity as low as $3.3{\times}10^{-4}{\Omega}cm$ and the transmittance above 80 % at the wavelength of 400 to 800 nm can be fabricated on glass substrate at room temperature. It is shown that a stable resistivity for the use in oxidation ambient at high temperature can be obtained for the films. Heat treatments were performed to examine the thermal stability of ZnO and GZO films at ptemperature range from $100^{\circ}C$ to $400^{\circ}C$ in $O_2$ ambient for 30 minutes. The resistivity of ZnO film annealed at $400^{\circ}C$ increased by two orders of magnitude, in case of GZO film was relatively stable up to at $400^{\circ}C$. For practical applications at high temperatures the thermal stability of resistivity of GZO thin films might become an advantage for transparent electrodes.

  • PDF

Ga 도핑된 ZnO 박막의 기판에 따른 성장 특성 (Effect of substrate on growth of Ga-doped ZnO thin films)

  • 김지홍;노지형;류경진;문성준;김재원;도강민;문병무;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.296-296
    • /
    • 2010
  • In this work, we report the effect of substrate on the growth of Ga-doped ZnO (GZO) thin films. GZO thin films were deposited on various substrates by using pulsed laser deposition (PLD). The structural properties, surface morphologies, and electrical properties were investigated. From the results of HRXRD, c-plane (0002) oriented growth of GZO films was confirmed on $Al_2O_3$ (0001). On the other hand, the GZO films on LAO (100) substrates were grown along the a-axis. The obvious differences on the electrical properties of each film were also obtained.

  • PDF

HVPE 방법으로 성장한 Alpha-Ga2O3의 특성 분석 (Characterization of Alpha-Ga2O3 Template Grown by Halide Vapor Phase Epitaxy)

  • 손호기;라용호;이영진;이미재;김진호;황종희;김선욱;임태영;전대우
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.357-361
    • /
    • 2018
  • We demonstrated a crack-free ${\alpha}-Ga_2O_3$ on sapphire substrate by horizontal halide vapor phase epitaxy (HVPE). Oxygen-and gallium chloride-synthesized Ga metal and HCl were used as the precursors, and $N_2$ was used as the carrier gas. The HCl flow and growth temperature were controlled in the ranges of 10~30 sccm and $450{\sim}490^{\circ}C$, respectively. The surface of ${\alpha}-Ga_2O_3$ template grown at $470^{\circ}C$ was flat and the root-mean-square (RMS) roughness was ~2 nm. The full width at half maximum (FWHM) values for the symmetric-plane diffractions, were as small as 50 arcsec and those for the asymmetric-plane diffractions were as high as 1,800 arcsec. The crystal quality of ${\alpha}-Ga_2O_3$ on sapphire can be controlled by varying the HCl flow rate and growth temperature.

후열처리 온도에 따른 ZnGa2O4 형광체 박막의 발광 특성 (Photoluminescence Characteristics of the ZnGa2O4 Phosphor Thin Films as a Function of Post-annealing Temperature)

  • 이성수;정중현
    • 센서학회지
    • /
    • 제11권1호
    • /
    • pp.60-65
    • /
    • 2002
  • $ZnGa_2O_4$박막 형광체는 기판 온도 $550^{\circ}C$, 산소 분압 100mTorr에서 Si(100) 기판 위에 펄스레이저 증착법을 이용하여 증착시켰고, 이렇게 증착되어진 박막을 $600^{\circ}C$$700^{\circ}C$에서 후 열처리하여 발광 특성을 조사하였다. X-선 회절 실험 결과, 후열처리 온도를 증가시킴에 따라서 $Ga_2O_3$ 상이 나타남을 확인할 수 있었다. 발광 스펙트럼은 460nm에서 최고 피크값을 나타내었으며. 350에서 600nm까지 갖는 넓은 밴드의 발광 특성을 나타내었다. 후열처리에 따른 $ZnGa_2O_4$ 박막은 다른 형태의 발광 강도와 grain 크기를 나타내었다.

Ga이 첨가된 ZnO 박막의 가스센서로의 응용 연구 (Ga doped ZnO Thin Films for Gas Sensor Application)

  • 황현석;여동훈;김종희;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.499-502
    • /
    • 2008
  • In this work, Ga-doped ZnO (GZO) thin films for gas sensor application were deposited on low temperature co-fired ceramics (LTCC) substrates, by RF magnetron sputtering method. The LTCC substrate is one of promising materials for this application since it has many advantages (e.g., low cost production, high manufacturing yields and easy realizing 3D structure etc.). The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The structural properties of the fabricated GZO thin film with thickness of 50 nm is analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The film shows good adhesion to the substrate. The GZO gas sensors are tested by gas measurement system and show fast response and recovery characteristics to $NO_x$ gas that is 27.2 and 27.9 sec, recpectively.

원격 플라즈마 원자층 증착법을 이용한 Al2O3/GaN MIS 구조의 제작 및 전기적 특성 (Fabrication and Electrical Properties of Al2O3/GaN MIS Structures using Remote Plasma Atomic Layer Deposition)

  • 윤형선;김현준;이우석;곽노원;김가람;김광호
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.350-354
    • /
    • 2009
  • $Al_{2}O_{3}$ thin films were deposited on GaN(0001) by using a Remote Plasma Atomic Layer Deposition(RPALD) technique with a trimethylaluminum(TMA) precursor and oxygen radicals in the temperature range of $25{\sim}500^{\circ}C$. The growth rate per cycle was varied with the substrate temperature from $1.8{\AA}$/cycle at $25^{\circ}C$ to $0.8{\AA}$/cycle at $500^{\circ}C$. The chemical structure of the $Al_{2}O_{3}$ thin films was studied using X-ray photoelectron spectroscopy(XPS). The electrical properties of $Al_{2}O_{3}$/GaN Metal-Insulator-Semiconductor (MIS) capacitor grown at a $300^{\circ}C$ process temperature were excellent, a low electrical leakage current density(${\sim}10^{-10}A/cm^2$ at 1 MV) at room temperature and a high dielectric constant of about 7.2 with a thinner oxide thickness of 12 nm. The interface trap density($D_{it}$) was estimated using a high-frequency C-V method measured at $300^{\circ}C$. These results show that the RPALD technique is an excellent choice for depositing high-quality $Al_{2}O_{3}$ as a Sate dielectric in GaN-based devices.

다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석 (Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure)

  • 장희연;최수민;박미선;정광희;강진기;이태경;김형재;이원재
    • 한국결정성장학회지
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3는 ~4.8 eV의 넓은 밴드 갭과 8 MV/cm의 높은 항복 전압을 가지는 물질로 전력소자의 응용 분야에서 많은 주목을 받고 있다. 또한, 대표적인 WBG 반도체 소재인 SiC, GaN, 다이아몬드 등과 비교했을 때, 높은 성장률과 낮은 제조 비용으로 단결정 성장이 가능하다는 장점을 가진다[1-4]. 본 연구에서는 다중 슬릿 구조를 이용한 EFG(Edge-defined Film-fed Growth) 법을 통해 SnO2 0.3 mol% 도핑된 10 mm 두께의 β-Ga2O3 단결정을 성장시키는 데에 성공했다. 성장 방향과 성장 면은 각각 [010]/(001)로 설정하였으며 성장 속도는 약 12 mm/h이다. 성장시킨 β-Ga2O3 단결정은 다양한 결정면(010, 001, 100, ${\bar{2}}01$)으로 절단하여 표면 가공을 진행하였다. 가공이 완료된 샘플은 XRD, UV/VIS/NIR Spec., Mercury Probe, AFM, Etching 등의 분석을 통해 결정면에 따른 특성을 비교하였다. 본 연구는 고전압 및 고온 응용 분야에서 전력반도체 기술의 발전에 기여할 것으로 기대되며 더 나은 특성의 기판을 선택하는 것은 소자의 성능과 신뢰성을 향상시키는데에 중요한 역할을 할 것이다.

Optimization of Backside Etching with High Uniformity for Large Area Transmission-Type Modulator

  • Lee, Soo-Kyung;Na, Byung-Hoon;Ju, Gun-Wu;Choi, Hee-Ju;Lee, Yong-Tak
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.319-320
    • /
    • 2012
  • Large aperture optical modulator called optical shutter is a key component to realize time-of-flight (TOF) based three dimensional (3D) imaging systems [1-2]. The transmission type electro-absorption modulator (EAM) is a prime candidate for 3D imaging systems due to its advantages such as small size, high modulation performance [3], and ease of forming two dimensional (2D) array over large area [4]. In order to use the EAM for 3D imaging systems, it is crucial to remove GaAs substrate over large area so as to obtain high uniformity modulation performance at 850 nm. In this study, we propose and experimentally demonstrate techniques for backside etching of GaAs substrate over a large area having high uniformity. Various methods such as lapping and polishing, dry etching for anisotropic etching, and wet etching ([20%] C6H8O7 : H2O2 = 5:1) for high selectivity backside etching [5] are employed. A high transmittance of 80% over the large aperture area ($5{\times}5mm^2$) can be obtained with good uniformity through optimized backside etching method. These results reveal that the proposed methods for backside etching can etch the substrate over a large area with high uniformity, and the EAM fabricated by using backside etching method is an excellent candidate as optical shutter for 3D imaging systems.

  • PDF

산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성 (Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate)

  • 김병국;김정연;오병진;임동건;박재환;우덕현;권순용
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.