• Title/Summary/Keyword: $G^E$ models

Search Result 669, Processing Time 0.032 seconds

A study of bilateral control with time delay

  • Shibasato, Kouki;Furuta, Katsuhisa;Yamakita, Masaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1681-1686
    • /
    • 1991
  • In robotics and other fields of engineering, techniques for artificial reality or virtual reality are focused on and studied extensively, e.g., virtual existence for tele-operator systems in robotics, and virtual reality of designed objects in architecture. In order to realize the system we should create physical stimulations according to internal models created by experiences in a human brain. The internal model does not have to have direct connections to the real world, however, the stimulation must be signals such that the internal model are retrieved in a human brain. In this paper we propose a technique for tele-virtual reality of dynamic mechanical models, which means that one dynamic mechanical model can be shared by peoples in distant places. Since a stability issue due to time delays arises in the system, we employed a scattering technique developed for a tele-operator system and a kind of passive adaptive controllers. Furthermore, restrictions due to a simple digital implementation of the scattering transformation are discussed and some conditions for stability are shown. The proposed method is applied to a remote tug of war system and the effectiveness is verified.

  • PDF

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.

Preclinical Efficacy and Mechanisms of Mesenchymal Stem Cells in Animal Models of Autoimmune Diseases

  • Lee, Hong Kyung;Lim, Sang Hee;Chung, In Sung;Park, Yunsoo;Park, Mi Jeong;Kim, Ju Young;Kim, Yong Guk;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) are present in diverse tissues and organs, including bone marrow, umbilical cord, adipose tissue, and placenta. MSCs can expand easily in vitro and have regenerative stem cell properties and potent immunoregulatory activity. They inhibit the functions of dendritic cells, B cells, and T cells, but enhance those of regulatory T cells by producing immunoregulatory molecules such as transforming growth factor-${\beta}$, hepatic growth factors, prostaglandin $E_2$, interleukin-10, indolamine 2,3-dioxygenase, nitric oxide, heme oxygenase-1, and human leukocyte antigen-G. These properties make MSCs promising therapeutic candidates for the treatment of autoimmune diseases. Here, we review the preclinical studies of MSCs in animal models for systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, and experimental autoimmune encephalomyelitis, and summarize the underlying immunoregulatory mechanisms.

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

Non-chemical Risk Assessment for Lifting and Low Back Pain Based on Bayesian Threshold Models

  • Pandalai, Sudha P.;Wheeler, Matthew W.;Lu, Ming-Lun
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Background: Self-reported low back pain (LBP) has been evaluated in relation to material handling lifting tasks, but little research has focused on relating quantifiable stressors to LBP at the individual level. The National Institute for Occupational Safety and Health (NIOSH) Composite Lifting Index (CLI) has been used to quantify stressors for lifting tasks. A chemical exposure can be readily used as an exposure metric or stressor for chemical risk assessment (RA). Defining and quantifying lifting nonchemical stressors and related adverse responses is more difficult. Stressor-response models appropriate for CLI and LBP associations do not easily fit in common chemical RA modeling techniques (e.g., Benchmark Dose methods), so different approaches were tried. Methods: This work used prospective data from 138 manufacturing workers to consider the linkage of the occupational stressor of material lifting to LBP. The final model used a Bayesian random threshold approach to estimate the probability of an increase in LBP as a threshold step function. Results: Using maximal and mean CLI values, a significant increase in the probability of LBP for values above 1.5 was found. Conclusion: A risk of LBP associated with CLI values > 1.5 existed in this worker population. The relevance for other populations requires further study.

Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling

  • Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.

Evolutionary properties of red supergiants with MESA

  • Chun, Sang-Hyun;Jung, Moo-Keon;Kim, Dong uk;Kim, Jihoon;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2017
  • We investigate the evolutionary properties of red supergiant stars (RSGs), using stellar evolution model of Modules for Experiments in Stellar Astrophysics (MESA). In this study, we calculate models with mass range of 9-39M_sun and several different convection parameters (e.g. mixing length, overshooting, and semiconvection) at SMC, LMC, Milky Way, and M31 metallicities. We compare the calculated evolutionary tracks with observed RSGs in SMC, LMC, Milky Way and M31, and discuss appropriate input physical parameters in model calculation. We find that a larger mixing length parameter is necessary for M31 metallicity to fit the positions of RSGs in H-R diagram, compared to lower metallicity environments. Theoretically predicted numbers of yellow supergiant stars (YSGs) are also compared with the observed population. We find that Ledoux models with semiconvection can better explain the number of YSGs. Finally, we investigate the final radius, final star mass, and final hydrogen envelope mass of RSGs and discussed the their properties as type II-P supernova progenitors.

  • PDF

Novel optimal intensity measures for probabilistic seismic analysis of RC high-rise buildings with core

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.443-452
    • /
    • 2018
  • In this paper the new intensity measures (IMs) for probabilistic seismic analysis of RC high-rise buildings with core wall structural system are proposed. The existing IMs are analysed and the new optimal ones are presented. The newly proposed IMs are based on the existing ones which: 1) comprise a wider range of frequency velocity spectrum content and 2) are defined as the integral along the velocity spectrum. In analysis characteristics of optimal IMs such as: efficiency, practicality, proficiency and sufficiency are considered. As prototype buildings, RC high-rise buildings with core wall structural system and with characteristic heights: 20-storey, 30-storey and 40-storey, are selected. The non-linear 3D models of the prototype buildings are constructed. 720 non-linear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes, distances to source and various soil types. Statistical processing of results and detailed regression analysis are performed and appropriate demand models which relate IMs to demand measures (DMs), are obtained. The conducted analysis has shown that the newly proposed IMs can efficiently predict the DMs with minimum dispersion and satisfactory practicality as compared to the other commonly used IMs (e.g., PGA and $S_a(T_1)$). The newly proposed IMs overcome difficulties in calculating of integral along the velocity spectrum and present adequate replacement for IMs which comprise a wider range of frequency velocity spectrum content.

Age-Related Male Osteoporosis, and Soy, Its Alternative Therapy - Review-

  • Soung, Do-Yu;Chung, Hae-Young;Rhee, Sook-Hee;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.298-309
    • /
    • 2005
  • As the population of the elderly grows, the prevalence of osteoporosis and its related fractures will increase in both men and women. The etiology, preventive and curative strategies of male osteoporosis are relatively unknown and understudied in comparison with those of female osteoporosis. Even currently approved therapies, e.g. bisphophonates, parathyroid hormone, and testosterone for male osteoporosis are in need of further investigation to test their safety and efficacy. Isoflavones which are found in soy have been shown to positively affect bone by stimulating bone formation while concurrently slowing down bone resorption. These observations mainly come from studies that have employed women or female animal models of osteoporosis. Therefore, there is a need to explore the role of soy and its isoflavones in preventing bone loss or rebuilding bone utilizing men or animal models of .male osteoporosis. From the review of existing literature it is too early to state the extent to which men with osteoporosis can benefit from consumption of soy or its isoflavones. In this review, the efficacy of soy and its isoflavones as alternative and/or adjunctive treatment for male osteoporosis will be discussed.

A Conceptual Data Model for a 3D Cadastre in Korea

  • Lee, Ji-Yeong;Koh, June-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.565-574
    • /
    • 2007
  • Because of most current cadastral systems maintain 2D geometric descriptions of parcels linked to administrative records, the system may not reflect current tendency to use space above and under the surface. The land has been used in multi-levels, e.g. constructions of multi-used complex buildings, subways and infrastructure above/under the ground. This cadastre situation of multilevel use of lands cannot be defined as cadastre objects (2D parcel-based) in the cadastre systems. This trend has requested a new system in which right to land is clearly and indisputably recorded because a right of ownership on a parcel relates to a space in 3D, not any more relates to 2D surface area. Therefore, this article proposes a 3D spatial data model to represent geometrical and topological data of 3D (property) situation on multilevel uses of lands in 3D cadastre systems, and a conceptual 3D cadastral model in Korea to design a conceptual schema for a 3D cadastre. Lastly, this paper presents the results of an experimental implementation of the 3D Cadastre to perform topological analyses based on 3D Network Data Model to identify spatial neighbors.