• Title/Summary/Keyword: $Fe_3O_4/SiO_2$ nanoparticles

Search Result 21, Processing Time 0.029 seconds

Biguanide-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media

  • Alizadeh, Abdolhamid;Khodaei, Mohammad M.;Beygzadeh, Mojtaba;Kordestani, Davood;Feyzi, Mostafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2546-2552
    • /
    • 2012
  • A novel biguanide-functionalized $Fe_3O_4/SiO_2$ magnetite nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperbase in chemical transformations. The structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental analyzer (EA), thermogravimetric analysis (TGA), $N_2$ adsorption-desorption (BET and BJH) and FT-IR. The biguanide-functionalized $Fe_3O_4/SiO_2$ nanoparticles showed a superpara-magnetic property with a saturation magnetization value of 46.7 emu/g, indicating great potential for application in magnetically separation technologies. In application point of view, the prepared catalyst was found to act as an efficient recoverable nanocatalyst in nitroaldol and domino Knoevenagel condensation/Michael addition/cyclization reactions in aqueous media under mild condition. Additionally, the catalyst was reused six times without significant degradation in catalytic activity and performance.

Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

  • Kim, Jongmin;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3362-3366
    • /
    • 2013
  • A simple and quick separation technique for selenite in natural water was developed using $TiO_2$@$SiO_2/Fe_3O_4$ nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the $TiO_2$ shell. The synthesized nanoparticles were used to separate selenite ($Se^{4+}$) in the presence of $Se^{6+}$ or selenium anions for the photocatalytic reduction to $Se^0$ atom on the $TiO_2$ shell, followed by magnetic separation using $Fe_3O_4$ nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis.

Immobilization and Performance of Penicillin G Acylase on Magnetic Ni0.7Co0.3Fe2O4@SiO2-CHO Nanocomposites

  • Lv, Zhixiang;Yu, Qingmei;Wang, Zhou;Liu, Ruijiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.913-922
    • /
    • 2019
  • Magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4$ nanoparticles that were prepared via the rapid combustion process were functionalized and modified to obtain magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites, on which penicillin G acylase (PGA) was covalently immobilized. Selections of immobilization concentration and time of fixation were explored. Catalytic performance of immobilized PGA was characterized. The free PGA had greatest activity at pH 8.0 and $45^{\circ}C$ while immobilized PGA's activities peaked at pH 7.5 and $45^{\circ}C$. Immobilized PGA had better thermal stability than free PGA at the range of $30-50^{\circ}C$ for different time intervals. The activity of free PGA would be 0 and that of immobilized PGA still retained some activities at $60^{\circ}C$ after 2 h. $V_{max}$ and $K_m$ of immobilized PGA were 1.55 mol/min and 0.15 mol/l, respectively. Free PGA's $V_{max}$ and $K_m$ separately were 0.74 mol/min and 0.028 mol/l. Immobilized PGA displayed more than 50% activity after 10 successive cycles. We concluded that immobilized PGA with magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites could become a novel example for the immobilization of other amidohydrolases.

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Effect of Pt as a Promoter in Decomposition of CH4 to Hydrogen over Pt(1)-Fe(30)/MCM-41 Catalyst (Pt(1)-Fe(30)/MCM-41 촉매상에서 수소 제조를 위한 메탄의 분해 반응에서 조촉매 Pt의 효과)

  • Ho Joon Seo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.674-678
    • /
    • 2023
  • The effect of Pt was investigated to the catalytic methane decomposition of CH4 to H2 over Pt(1)-Fe(30)/MCM-41 and Fe(30)/MCM-41 using a fixed bed flow reactor under atmosphere. The Fe2O3 and Pt crystal phase behavior of fresh Pt(1)-Fe(30)/MCM-41 were obtained via XRD analysis. SEM, EDS analysis, and mapping were performed to show the uniformed distribution of nano particles such as Fe, Pt, Si, O on the catalyst surface. XPS results showed O2-, O- species and metal ions such as Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ etc. When 1 wt% of Pt was added to Fe(30)/MCM-41, automic percentage of Fe2p increased from 13.39% to 16.14%, and Pt4f was 1.51%. The yield of hydrogen over Pt(1)-Fe(30)/MCM-41 was 3.2 times higher than Fe(30)/MCM-41. The spillover effect of H2 from Pt to Fe increased the reduction of Fe particles and moderate interaction of Fe, Pt and MCM-41 increased the uniform dispersion of fine nanoparticles on the catalyst surface, and improved hydrogen yield.

Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties (자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성)

  • Kim, Mun-Kyoung;Kim, Seyun;Moon, Kyoung-Seok;Shin, Weon Ho;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.463-470
    • /
    • 2019
  • Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

Colloidal Photonic Crystals with Quasi-Amorphous Structure: Angle-Independent Electrically Tunable Full Color Photonic Pixels

  • Kim, Dae-Hyeon;Jeong, Jae-Yeon;Ji, Seung-Uk;Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.278-278
    • /
    • 2010
  • Electrically tunable photonic band gap (PBG) materials based on crystalline structures have been developed for active components of display. Despite considerable advances, the intrinsic drawbacks of the crystalline PBG materials such as the strong angle dependent hue and difficulty of fabricating defect-free structures in large area have yet to be addressed for their practical applications. Here we report quasi-amorphous colloidal structures exhibiting angle-independent photonic colors in response to the electric stimuli. Moderately polydisperse colloidal Fe3O4@SiO2 nanoparticles dispersed in organic solvents exclusively form quasi-amorphous photonic materials at sufficiently high concentrations (> 30 wt%), and which reversibly reflect incident light in visible region ($\lambda$ peak = 490~655 nm) in response to the relatively low bias voltage (0~4 V). We show the angle-independent tunable photonic colors with the fast response time (50~170 ms) due to the isotropic nature of quasi-amorphous structures. Conventional vacuum injection technique is applicable for fabricating flexible full color photonic display pixels with various pre-defined shapes.

  • PDF

SIMS Protein imaging with nanoparticle tagged antibody for simultaneous omic imaging

  • Lee, Seon-Yeong;Mun, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.230.1-230.1
    • /
    • 2015
  • One of the major problems of biological ToF-SIMS imaging is the lack of protein and peptide imaging. Most of biological story telling is mianly based on proteins. The biological implication of lipid ToF-SIMS imaging would be much higher if protein imaging is provided together. Utilizing high secondary ion yields of metals, proteins can be ToF-SIMS imaged with nanoparticle tagged proteins. Nanoparticles such as Fe3O4, SiO2, PbS were used for imaing NeuN, MCH, Orexin A, ${\alpha}$ synucline, TH(Tryosine Hydroxylase) in mouse tissues with a spatial resolution of ${\sim}2{\mu}m$ using a TOF-SIMS. Lipids and neurotransmitters images obtained simultaneously with protein images were overlayed for more deeper understanding of neurobiology, which is not allowed by any other bioimaging technqiues. The protein images from TOF-SIMS were compared with confocal fluorescence microscopy and NanoSIMS images. A new sample preparation method for imaging single cell membranes in a tissue using the vibrotome technique to prepare a tissue slice without any fixation and freeze drying will be also presented briefly for Hippocampus and Hypothalamus tissues.

  • PDF