Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.8.2546

Biguanide-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media  

Alizadeh, Abdolhamid (Faculty of Chemistry, Department of Organic Chemistry, Razi University)
Khodaei, Mohammad M. (Faculty of Chemistry, Department of Organic Chemistry, Razi University)
Beygzadeh, Mojtaba (Faculty of Chemistry, Department of Organic Chemistry, Razi University)
Kordestani, Davood (Faculty of Chemistry, Department of Organic Chemistry, Razi University)
Feyzi, Mostafa (Faculty of Chemistry, Department of Organic Chemistry, Razi University)
Publication Information
Abstract
A novel biguanide-functionalized $Fe_3O_4/SiO_2$ magnetite nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperbase in chemical transformations. The structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental analyzer (EA), thermogravimetric analysis (TGA), $N_2$ adsorption-desorption (BET and BJH) and FT-IR. The biguanide-functionalized $Fe_3O_4/SiO_2$ nanoparticles showed a superpara-magnetic property with a saturation magnetization value of 46.7 emu/g, indicating great potential for application in magnetically separation technologies. In application point of view, the prepared catalyst was found to act as an efficient recoverable nanocatalyst in nitroaldol and domino Knoevenagel condensation/Michael addition/cyclization reactions in aqueous media under mild condition. Additionally, the catalyst was reused six times without significant degradation in catalytic activity and performance.
Keywords
Magnetic nanoparticles; Interfacial catalysts; Surface-modification; Organosuperbases;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Gunasekaran, S.; Natarajan, R. K.; Renganayaki, V.; Natarajan, S. Indian. J. Pure & Applied Physics 2006, 44, 495.
2 Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. J. Colloid Interface Sci. 2010, 349, 293.   DOI
3 Lei, Z.; Li, Y.; Wei, X. J. Solid State Chem. 2008, 181, 480.   DOI
4 Chang, Y. C.; Chen, D. H. J. Colloid Interface Sci. 2005, 283, 446.   DOI
5 Naka, K.; Narital, A.; Tanakal, H.; Chujo, Y.; Morita, M.; Inubushi, T.; Nishimura, I.; Hiruta, J.; Shibayama, H.; Koga, M.; Ishibashi, S.; Seki, J.; Kizaka-Kondoh, S.; Hiraoka, M. Polym. Adv. Technol. 2008, 19, 1421.   DOI
6 Ohandley, R. C. Modern Magnetic Materials: Principles and Applicat Ions; Wiley: New York, 2000.
7 Iida, R. H.; Takayanagi, K.; Nakanishi, T.; Osaka, T. J. Colloid Interface Sci. 2007, 314, 274.   DOI
8 ChengLin, G. W.; Huan, H.; HongJun, G.; Gan, L.; RuJiang, M.; YingLi, A.; LinQi, S. Sci. China Chem. 2010, 53, 514.   DOI
9 Zhou, C. L.; Zhou, Y. Q.; Wang, Z. Y. Chinese Chem. Lett. 2003, 14, 355.
10 Bray, C. V.; Jiang, F.; Wu, X. F.; Sortais, J.-B.; Darcel, C. Tetrahedron Lett. 2010, 51, 4555.   DOI
11 Abdolmohammadi, S.; Balalaie, S. Tetrahedron Lett. 2007, 48, 3299.   DOI
12 Heravi, M. M.; Alimadadi-Jani, B.; Derikvand, F.; Bamoharram, F. F.; Oskooie, H. A. Catal. Commun. 2008, 10, 272.   DOI
13 Wang, L. M.; Shao, J. H.; Tian, H.; Wang, Y. H.; Liu, B. J. Fluorine Chem. 2006, 127, 97.   DOI
14 Hekmatshoar, R.; Majedi, S.; Bakhtiari, K. Catal. Commun. 2008, 9, 307.   DOI
15 Shylesh, S.; Schunemann, V.; Thiel, W. R. Angew. Chem. Int. Ed. 2010, 49, 3428.   DOI
16 Ranganath, K. V. S.; Glorius, F. Catal. Sci. Technol. 2011, 1, 13.   DOI
17 Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036.   DOI
18 Macquarrie, D. J.; Jackson, D. B.; Tailland, S.; Utting, K. A. J. Mater. Chem. 2001, 11, 1843.   DOI
19 Kim, K. S.; Somg, J. H.; Kim, J. H.; Seo, G. Stud. Surf. Sci. Catal. 2003, 146, 505.   DOI
20 Phan, N. T. S.; Jones, C. W. J. Mol. Catal. A 2006, 253, 123.   DOI
21 Gelbard, G.; Vielfaure-Joly, F. Tetrahedron Lett. 1998, 39, 2743.   DOI
22 Yang, D.; Hu, J.; Fu, S. J. Phys. Chem. C 2009, 113, 7646.   DOI
23 Stober, W.; Fink, A.; Bohn, E. J. J. Colloid Interface Sci. 1968, 26, 62.   DOI   ScienceOn
24 Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores, A.-R.; Li, C.-J. Org. Lett. 2011, 13, 442.   DOI
25 Abdolmohammadi, S.; Balalaie, S. Tetrahedron Lett. 2007, 48, 3299.   DOI
26 Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. Eur. J. Med. Chem. 2009, 44, 3805.   DOI
27 Yang, T. Z.; Shen, C. M.; Gao, H. J. J. Phys. Chem. B 2005, 109, 23233.   DOI
28 Giri, J.; Thakurta, S. G.; Bellare, J.; Nigam, A. K.; Bahadur, D. J. Magn. Magn. Mater. 2005, 293, 62.   DOI
29 Yamaura, M.; Camiloa, R. L.; Sampaio, L. C.; Macedo, M. A.; Nakamura, M.; Toma, H. E. J. Magn. Magn. Mater. 2004, 279, 210.   DOI   ScienceOn
30 Waldron, R. D. Phys. Rev. 1955, 99, 1727.   DOI
31 Ishigawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons: 2009.
32 Haflinger, G.; Kuske, F. K. H. The Chemistry of Amidines and Imidates; John Wiley & Sons: Chichester, 1991.
33 Hu, A.; Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486.   DOI   ScienceOn
34 Gladysz, J. A. Chem. Rev. 2002, 102, 3215.   DOI
35 Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217.   DOI