Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.6.463

Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties  

Kim, Mun-Kyoung (Department of Material Science and Engineering, Kangwon National University)
Kim, Seyun (Inorganic Material Lab, Samsung Advanced Institute of Technology)
Moon, Kyoung-Seok (School of Materials Science and Engineering, Gyeongsang National University)
Shin, Weon Ho (Department of Electronic Materials Engineering, Kwangwoon University)
Jeong, Hyung Mo (Department of Material Science and Engineering, Kangwon National University)
Publication Information
Journal of Powder Materials / v.26, no.6, 2019 , pp. 463-470 More about this Journal
Abstract
Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.
Keywords
Core-shell nanoparticle; Magnetic properties; Photoluminescence; Rare-earth element; Host-guest materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. Lee, S. N. Cho and J. Cheon: Adv. Mater., 15 (2003) 441.   DOI
2 R. van de Coevering, A. P. Alfers, J. D. Meeldijk, E. Martinez-Viviente, P. S. Pregosin, R. J. M. Klein Gebbink and G. van Koten: J. Am. Chem. Soc., 128 (2006) 12700.   DOI
3 M. A. Alam, M. A. J. Miah and H. Ahmad: Polym. Adv. Technol., 19 (2008) 181.   DOI
4 H. Zeng, J. Li, Z. L. Wang, J. P. Liu and S. Sun: Nano Lett., 4 (2004) 187.   DOI
5 S. Xuan, Y.-X. J. Wang, J. C. Yu and K. C.-F. Leung: Langmuir, 25 (2009) 11835.   DOI
6 M. Ocana, W. P. Hsu and E. Matijevic: Langmuir, 7 (1991) 2911.   DOI
7 S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard and W. Tan: Langmuir, 17 (2001) 2900.   DOI
8 I. Mekis, D. V. Talapin, A. Kornowski, M. Haase and H. Weller: J. Phys. Chem. B, 107 (2003) 7454.   DOI
9 D. Wang, J. He, N. Rosenzweig and Z. Rosenzweig: Nano Lett., 4 (2004) 409.   DOI
10 W. K. Liu, K. M. Whitaker, K. R. Kittilstved and D. R. Gamelin: J. Am. Chem. Soc., 128 (2006) 3910.   DOI
11 Z.-J. Jiang and C.-Y. Liu: J. Phys. Chem. B, 107 (2003) 12411.   DOI
12 U. V. Valiev, S. A. Rakhimov, N. I. Juraeva, R. A. Rupp, L. Zhao, Z. Wang, Z. Zhai, J. B. Gruber and G. W. Burdick: Phys. Status Solidi B, 247 (2010) 163.   DOI
13 C.-W. Lai, Y.-H. Wang, C.-H. Lai, M.-J. Yang, C.-Y. Chen, P.-T. Chou, C.-S. Chan, Y. Chi, Y.-C. Chen and J.-K. Hsiao: Small, 4 (2008) 218.   DOI
14 F. Caruso, M. Spasova, V. Salgueirino-Maceira and L. M. Liz-Marzan: Adv. Mater., 13 (2001) 1090.   DOI
15 M. S. Fleming, T. K. Mandal and D. R. Walt: Chem. Mater., 13 (2001) 2210.   DOI
16 Z. Xu, Y. Hou and S. Sun: J. Am. Chem. Soc., 129 (2007) 8698.   DOI
17 J. M. Perez, T. O'Loughin, F. J. Simeone, R. Weissleder and L. Josephson: J. Am. Chem. Soc., 124 (2002) 2856.   DOI
18 J. M. Perez, F. J. Simeone, A. Tsourkas, L. Josephson and R. Weissleder: Nano Lett., 4 (2004) 119.   DOI
19 A. Y. Louie, M. M. Huber, E. T. Ahrens, U. Rothbacher, R. Moats, R. E. Jacobs, S. E. Fraser and T. J. Meade: Nat. Biotechnol., 18 (2000) 321.   DOI
20 A. K. Levine and F. C. Palilla: Appl. Phys. Lett., 5 (1964) 118.   DOI
21 Y. Zhang, S. Pan, X. Teng, Y. Luo and G. Li: J. Phys. Chem. C, 112 (2008) 9623.   DOI
22 M. Chen, L. Gao, S. Yang and J. Sun: Chem. Commun., (2007) 1272.
23 M. Stjerndahl, M. Andersson, H. E. Hall, D. M. Pajerowski, M. W. Meisel and R. S. Duran: Langmuir, 24 (2008) 3532.   DOI
24 J. Ge, Y. Hu, M. Biasini, W. P. Beyermann and Y. Yin: Angew. Chem. Int. Ed., 46 (2007) 4342.   DOI
25 A.-L. Morel, S. I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson and M. Simonoff: ACS Nano, 2 (2008) 847.   DOI
26 L. Tong, J. Shi, D. Liu, Q. Li, X. Ren and H. Yang: J. Phys. Chem. C, 116 (2012) 7153.   DOI
27 L. R. Singh and R. S. Ningthoujam: J. Appl. Phys., 107 (2010) 104304.   DOI
28 W. Stober, A. Fink and E. Bohn: J. Colloid Interface Sci., 26 (1968) 62.   DOI
29 A. Huignard, T. Gacoin and J.-P. Boilot: Chem. Mater., 12 (2000) 1090.   DOI
30 P. Yang, Z. Quan, L. Lu, S. Huang, J. Lin and H. Fu: Nanotechnology, 18 (2007) 235703.   DOI
31 M. Yu, J. Lin and J. Fang: Chem. Mater., 17 (2005) 1783.   DOI
32 M. Chang and S. Tie: Nanotechnology, 19 (2008) 075711.   DOI
33 K. Riwotzki and M. Haase: J. Phys. Chem. B, 105 (2001) 12709.   DOI
34 X. Wu, Y. Tao, C. Song, C. Mao, L. Dong and J. Zhu: J. Phys. Chem. B, 110 (2006) 15791.   DOI
35 W. Chen, A. G. Joly, C. M. Kowalchuk, J.-O. Malm, Y. Huang and J.-O. Bovin: J. Phys. Chem. B, 106 (2002) 7034.   DOI
36 L. Chen, Y. Liu and K. Huang: Mater. Res. Bull., 41 (2006) 158.   DOI
37 F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu and D.-B. Shieh: Biomaterials, 26 (2005) 729.   DOI
38 L. Yanhong and H. Guangyan: J. Solid State Chem., 178 (2005) 645.   DOI
39 J. Feng, S.-Y. Song, R.-P. Deng, W.-Q. Fan and H.-J. Zhang: Langmuir, 26 (2010) 3596.   DOI