DOI QR코드

DOI QR Code

Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties

자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성

  • Kim, Mun-Kyoung (Department of Material Science and Engineering, Kangwon National University) ;
  • Kim, Seyun (Inorganic Material Lab, Samsung Advanced Institute of Technology) ;
  • Moon, Kyoung-Seok (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Shin, Weon Ho (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Jeong, Hyung Mo (Department of Material Science and Engineering, Kangwon National University)
  • 김문경 (강원대학교 신소재공학과) ;
  • 김세윤 (삼성전자) ;
  • 문경석 (경상대학교 나노.신소재공학부) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 정형모 (강원대학교 신소재공학과)
  • Received : 2019.11.18
  • Accepted : 2019.12.03
  • Published : 2019.12.28

Abstract

Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.

Keywords

References

  1. F. Caruso, M. Spasova, V. Salgueirino-Maceira and L. M. Liz-Marzan: Adv. Mater., 13 (2001) 1090. https://doi.org/10.1002/1521-4095(200107)13:14<1090::AID-ADMA1090>3.0.CO;2-H
  2. Z.-J. Jiang and C.-Y. Liu: J. Phys. Chem. B, 107 (2003) 12411. https://doi.org/10.1021/jp035060g
  3. M. S. Fleming, T. K. Mandal and D. R. Walt: Chem. Mater., 13 (2001) 2210. https://doi.org/10.1021/cm010168z
  4. Z. Xu, Y. Hou and S. Sun: J. Am. Chem. Soc., 129 (2007) 8698. https://doi.org/10.1021/ja073057v
  5. S. M. Lee, S. N. Cho and J. Cheon: Adv. Mater., 15 (2003) 441. https://doi.org/10.1002/adma.200390102
  6. R. van de Coevering, A. P. Alfers, J. D. Meeldijk, E. Martinez-Viviente, P. S. Pregosin, R. J. M. Klein Gebbink and G. van Koten: J. Am. Chem. Soc., 128 (2006) 12700. https://doi.org/10.1021/ja060079t
  7. M. A. Alam, M. A. J. Miah and H. Ahmad: Polym. Adv. Technol., 19 (2008) 181. https://doi.org/10.1002/pat.993
  8. H. Zeng, J. Li, Z. L. Wang, J. P. Liu and S. Sun: Nano Lett., 4 (2004) 187. https://doi.org/10.1021/nl035004r
  9. S. Xuan, Y.-X. J. Wang, J. C. Yu and K. C.-F. Leung: Langmuir, 25 (2009) 11835. https://doi.org/10.1021/la901462t
  10. M. Ocana, W. P. Hsu and E. Matijevic: Langmuir, 7 (1991) 2911. https://doi.org/10.1021/la00060a008
  11. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard and W. Tan: Langmuir, 17 (2001) 2900. https://doi.org/10.1021/la0008636
  12. I. Mekis, D. V. Talapin, A. Kornowski, M. Haase and H. Weller: J. Phys. Chem. B, 107 (2003) 7454. https://doi.org/10.1021/jp0278364
  13. D. Wang, J. He, N. Rosenzweig and Z. Rosenzweig: Nano Lett., 4 (2004) 409. https://doi.org/10.1021/nl035010n
  14. W. K. Liu, K. M. Whitaker, K. R. Kittilstved and D. R. Gamelin: J. Am. Chem. Soc., 128 (2006) 3910. https://doi.org/10.1021/ja060488p
  15. U. V. Valiev, S. A. Rakhimov, N. I. Juraeva, R. A. Rupp, L. Zhao, Z. Wang, Z. Zhai, J. B. Gruber and G. W. Burdick: Phys. Status Solidi B, 247 (2010) 163. https://doi.org/10.1002/pssb.200945318
  16. C.-W. Lai, Y.-H. Wang, C.-H. Lai, M.-J. Yang, C.-Y. Chen, P.-T. Chou, C.-S. Chan, Y. Chi, Y.-C. Chen and J.-K. Hsiao: Small, 4 (2008) 218. https://doi.org/10.1002/smll.200700283
  17. J. M. Perez, T. O'Loughin, F. J. Simeone, R. Weissleder and L. Josephson: J. Am. Chem. Soc., 124 (2002) 2856. https://doi.org/10.1021/ja017773n
  18. J. M. Perez, F. J. Simeone, A. Tsourkas, L. Josephson and R. Weissleder: Nano Lett., 4 (2004) 119. https://doi.org/10.1021/nl034983k
  19. A. Y. Louie, M. M. Huber, E. T. Ahrens, U. Rothbacher, R. Moats, R. E. Jacobs, S. E. Fraser and T. J. Meade: Nat. Biotechnol., 18 (2000) 321. https://doi.org/10.1038/73780
  20. A. K. Levine and F. C. Palilla: Appl. Phys. Lett., 5 (1964) 118. https://doi.org/10.1063/1.1723611
  21. A. Huignard, T. Gacoin and J.-P. Boilot: Chem. Mater., 12 (2000) 1090. https://doi.org/10.1021/cm990722t
  22. P. Yang, Z. Quan, L. Lu, S. Huang, J. Lin and H. Fu: Nanotechnology, 18 (2007) 235703. https://doi.org/10.1088/0957-4484/18/23/235703
  23. Y. Zhang, S. Pan, X. Teng, Y. Luo and G. Li: J. Phys. Chem. C, 112 (2008) 9623. https://doi.org/10.1021/jp8015326
  24. M. Chen, L. Gao, S. Yang and J. Sun: Chem. Commun., (2007) 1272.
  25. M. Stjerndahl, M. Andersson, H. E. Hall, D. M. Pajerowski, M. W. Meisel and R. S. Duran: Langmuir, 24 (2008) 3532. https://doi.org/10.1021/la7035604
  26. A.-L. Morel, S. I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson and M. Simonoff: ACS Nano, 2 (2008) 847. https://doi.org/10.1021/nn800091q
  27. L. Tong, J. Shi, D. Liu, Q. Li, X. Ren and H. Yang: J. Phys. Chem. C, 116 (2012) 7153. https://doi.org/10.1021/jp212579t
  28. L. R. Singh and R. S. Ningthoujam: J. Appl. Phys., 107 (2010) 104304. https://doi.org/10.1063/1.3373409
  29. J. Ge, Y. Hu, M. Biasini, W. P. Beyermann and Y. Yin: Angew. Chem. Int. Ed., 46 (2007) 4342. https://doi.org/10.1002/anie.200700197
  30. W. Stober, A. Fink and E. Bohn: J. Colloid Interface Sci., 26 (1968) 62. https://doi.org/10.1016/0021-9797(68)90272-5
  31. M. Yu, J. Lin and J. Fang: Chem. Mater., 17 (2005) 1783. https://doi.org/10.1021/cm0479537
  32. M. Chang and S. Tie: Nanotechnology, 19 (2008) 075711. https://doi.org/10.1088/0957-4484/19/7/075711
  33. K. Riwotzki and M. Haase: J. Phys. Chem. B, 105 (2001) 12709. https://doi.org/10.1021/jp0113735
  34. X. Wu, Y. Tao, C. Song, C. Mao, L. Dong and J. Zhu: J. Phys. Chem. B, 110 (2006) 15791. https://doi.org/10.1021/jp060527j
  35. W. Chen, A. G. Joly, C. M. Kowalchuk, J.-O. Malm, Y. Huang and J.-O. Bovin: J. Phys. Chem. B, 106 (2002) 7034. https://doi.org/10.1021/jp020787a
  36. L. Chen, Y. Liu and K. Huang: Mater. Res. Bull., 41 (2006) 158. https://doi.org/10.1016/j.materresbull.2005.07.023
  37. L. Yanhong and H. Guangyan: J. Solid State Chem., 178 (2005) 645. https://doi.org/10.1016/j.jssc.2004.12.018
  38. F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu and D.-B. Shieh: Biomaterials, 26 (2005) 729. https://doi.org/10.1016/j.biomaterials.2004.03.016
  39. J. Feng, S.-Y. Song, R.-P. Deng, W.-Q. Fan and H.-J. Zhang: Langmuir, 26 (2010) 3596. https://doi.org/10.1021/la903008z