• 제목/요약/키워드: $Fe_2O_3$ nanoparticles

검색결과 196건 처리시간 0.025초

Magnetic Property of α-Fe2O3 Nanoparticles Prepared by Sonochemistry and Take-off Technique

  • Koo, Y.S.;Yun, B.K.;Jung, J.H.
    • Journal of Magnetics
    • /
    • 제15권1호
    • /
    • pp.21-24
    • /
    • 2010
  • A new synthetic method for the formation of uniform $\alpha-Fe_2O_3$ nanoparticles was reported and their magnetic properties were investigated. The sonochemical synthesis and the subsequent take-off technique resulted in spherical shaped $\alpha-Fe_2O_3$ nanoparticles with an average diameter of 60 nm. The temperature- and applied magnetic field-dependent magnetization of the $\alpha-Fe_2O_3$ nanoparticles was explained by the sum of two contributions, i.e., the Morin transition and superparamagnetism, because the critical size for superparamagnetism was within the size variation of the nanoparticles.

Exchange Bias in Cr2O3/Fe3O4 Core/Shell Nanoparticles

  • Yun, B.K.;Koo, Y.S.;Jung, J.H.
    • Journal of Magnetics
    • /
    • 제14권4호
    • /
    • pp.147-149
    • /
    • 2009
  • We report the exchange bias in antiferromagnet/ferrimagnet $Cr_2O_3/Fe_3O_4$ core/shell nanoparticles. The magnetic field hysteresis curve for $Cr_2O_3/Fe_3O_4$ nanoparticles after field-cooling (FC) clearly showed both horizontal ($H_{EB}{\sim}$610 Oe) and vertical (${\Delta}M{\sim}$5.6 emu/g) shifts at 5 K. These shifts disappeared as the temperature increased toward the Neel temperature of $Cr_2O_3\;(T_N{\sim}$307 K). The $H_{EB}\;and\;{\Delta}M$ values were sharply decreased between the $1^{st}\;and\;the\;2^{nd}$ magnetic field cycles, and then slowly decreased with further cycling. These results are discussed in terms of the formation of single domains with pinned, uncompensated, antiferromagnetic spin and their evolution into multi-domains with cycling.

마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구 (Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion)

  • 유리;김유진;피재환;황광택;양희승;김경자
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

에어로졸 분무열분해법을 이용한 코발트페라이트-그래핀 복합체 분말 제조 및 슈퍼커패시터 응용 (Preparation of CoFe2O4-Graphene Composites using Aerosol Spray Pyrolysis for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.33-40
    • /
    • 2017
  • Cobalt-iron oxides have emerged as alternative electrode materials for supercapacitors because they have advantages of low cost, natural abundance, and environmental friendliness. Graphene loaded with cobalt ferrite ($CoFe_2O_4$) nanoparticles can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with $CoFe_2O_4$ nanoparticles. The $CoFe_2O_4$-graphene composites were synthesized from a colloidal mixture of GO, iron (III) chloride hexahydrate ($FeCl_3{\cdot}6H_2O$) and cobalt chloride hexahydrate ($CoCl_2{\cdot}6H_2O$) respectively, via one step aerosol spray pyrolysis. Size of $CoFe_2O_4$ nanoparticles was ranged from 5 nm to 10 nm when loaded onto 500 nm CGR. The electrochemical performance of the $CoFe_2O_4$-graphene composites was examined. The $CoFe_2O_4$-graphene composite electrode showed the specific capacitance of $253F\;g^{-1}$.

Synthesis of $TiO_2$ nantubes coupled with ${\alpha}-Fe_2O_3$ nanoparticles and investigation of their photoelectrochemical activity

  • Mao, Aiming;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2009
  • $TiO_2$ nanotube arraysdecorated with ${\alpha}-Fe_2O_3$ were prepared by forming a nanotube-like $TiO_2$ film on a Ti sheet using an anodization process, followed by electrochemical deposition treatment to decorate hematite (${\alpha}-Fe_2O_3$) nanoparticles on the $TiO_2$ nanotube arrays. The SEM and XRD results revealed that the ${\alpha}-Fe_2O_3$ nanoparticles were homogeneously embedded on the surface of the $TiO_2$ nanotube arrays. The activity of hydrogen production by photocatalytic water decomposition for the ${\alpha}-Fe_2O_3/TiO_2$ nanotube array composite was examined under visible light irradiation.

  • PDF

Antibacterial Effect of Chitosan-Modified Fe3O4 Nanozymes on Acinetobacter baumannii

  • Wang, Wenjun;Wu, ziman;Shi, peiru;Wu, pinyun;Qin, peng;Yu, lin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.263-267
    • /
    • 2022
  • The aim of this study was to determine whether the antibacterial activity of chitosan-modified Fe3O4 (CS@Fe3O4) nanomaterials against Acinetobacter baumannii (A. baumannii) is mediated through changes in biofilm formation and reactive oxygen species (ROS) production. For this purpose, the broth dilution method was used to examine the effect of CS@Fe3O4 nanoparticles on bacterial growth. The effects of CS@Fe3O4 nanoparticles on biofilm formation were measured using a semi-quantitative crystal violet staining assay. In addition, a bacterial ROS detection kit was used to detect the production of ROS in bacteria. The results showed that CS@Fe3O4 nanoparticles had a significant inhibitory effect on the colony growth and biofilm formation of drug-resistant A. baumannii (p < 0.05). The ROS stress assay revealed significantly higher ROS levels in A. baumannii subjected to CS@Fe3O4 nanoparticle treatment than the control group (p < 0.05). Thus, we demonstrated for the first time that CS@Fe3O4 nanoparticles had an inhibitory effect on A. baumannii in vitro, and that the antibacterial effect of CS@Fe3O4 nanoparticles on drug-resistant A. baumannii was more significant than on drug-sensitive bacteria. Our findings suggest that the antibacterial mechanism of CS@Fe3O4 nanoparticles is mediated through inhibition of biofilm formation in drug-resistant bacteria, as well as stimulation of A. baumannii to produce ROS. In summary, our data indicate that CS@Fe3O4 nanoparticles could be used to treat infections caused by drug-resistant A. baumannii.

저압 초음파 분무 공정을 이용한 γ-Fe2O3 나노입자의 합성 (Synthesis of γ-Fe2O3 Nanoparticles by Low-pressure Ultrasonic Spraying)

  • 이창우;김순길;좌용호;이재성
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.19-25
    • /
    • 2007
  • This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure ${\gamma}-Fe_2O_3$ nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure ${\gamma}-Fe_2O_3$ nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl ($Fe(CO)_{5}$) in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over $800^{\circ}C$. Also magnetic properties, coercivity ($H_c$) and saturation magnetization ($M_s$) were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).

영구자석 스크랩으로 합성한 산화철 나노입자의 물성에 미치는 열처리 온도의 영향 (Effect of Heat-treatment Temperature on the Physical Properties of Iron Oxide Nanoparticles Synthesized by Using Permanent Magnet Scrap)

  • 홍성제;홍상혁;조아진;김용성;김병준;양수원;이재용
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.110-116
    • /
    • 2022
  • 본 연구에서는 NdFeB 영구자석 스크랩으로부터 회수한 철(Fe) 부산물을 이용하여 산화철(FeOx) 나노입자를 합성하였고, 열처리 온도가 FeOx 나노입자의 물성에 미치는 영향을 관찰하였다. 이를 위해 D.I. water에 약 10 wt%로 희석한 철 부산물 용액에 2.0 M 암모니아(NH4OH) 용액을 투여하여 산화철 전구체를 석출하였고, 이를 300 ℃, 400 ℃, 500 ℃ 및 600 ℃로 각각 열처리하여 FeOx 나노 입자를 합성, 열처리 온도에 따른 FeOx 나노 입자의 물성을 관찰하였다. X-ray diffraction (XRD) 분석 결과 열처리 온도가 증가할수록 <104> 회절 피크가 성장하여 500 ℃ 이상에서 α-Fe2O3 결정구조와 일치하는 회절 피크가 검출되었다. BET (Brunauer-Emmett-Teller) 비표면적 분석 결과 400 ℃ 이상에서 열처리 온도가 증가할수록 비표면적이 감소하는 경향을 나타내었다. HRTEM (high resolution transmission electron microscope) 관찰 결과 rod 형 나노입자가 관찰되었고, 열처리 온도 증가에 따라 나노입자의 크기가 증가하는 경향을 나타내었다.

Synthesis and Magnetic Properties of Dendron Capped Fe2O3 Nanoparticles

  • George, Sheby M.;Hong, In-Seok;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1545-1553
    • /
    • 2008
  • Using a one-pot reaction technique, monodisperse $\gamma-Fe_2O_3$ nanoparticles were prepared by thermal decomposition of Fe$(CO)_5$ in the presence of a long alkyl chain terminated dendron surfactant. The size of the particles is controlled by adjusting the concentration of the dendron ligands in the reaction solution. Spherical, 2 nm sized nanoparticles were obtained with a 3:1 ratio of dendrons to Fe$(CO)_5$, while 4.6 nm sized particles were formed with a 1:3 ratio. Superparamagetic properties of 2 nm, 4 nm, and 4.6 nm sized particles were measured using a SQUID magnetometer.

Protein-Directed Synthesis of γ-Fe2O3 Nanoparticles and Their Magnetic Properties Investigation

  • Soleyman, Rouhollah;Pourjavadi, Ali;Masoud, Nazila;Varamesh, Akbar;Sattari, Abolfazl
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1375-1378
    • /
    • 2014
  • In this study, maghemite (${\gamma}-Fe_2O_3$) nanoparticles were produced using gelatin protein as an effective mediator. Size, shape, surface morphology and magnetic properties of the prepared ${\gamma}-Fe_2O_3$ nanoparticles were characterized using XRD, FT-IR, TEM, SEM and VSM data. The effects of furnace temperature and time of heating together with the amount of gelatin on the produced gelatin-$Fe_3O_4$ nanocomposite were examined to prove the fundamental effect of gelatin; both as a capping agent in the nanoscale synthesis and as the director of the spinel ${\gamma}-Fe_2O_3$ synthesis among possible $Fe_2O_3$ crystalline structures.