Antibacterial Effect of Chitosan-Modified Fe3O4 Nanozymes on Acinetobacter baumannii |
Wang, Wenjun
(The First Affiliated Hospital of Guangzhou Medical University)
Wu, ziman (The First Affiliated Hospital of Guangzhou Medical University) Shi, peiru (Guangzhou Medical University (KingMed school of Laboratory Medicine)) Wu, pinyun (Guangzhou Medical University (KingMed school of Laboratory Medicine)) Qin, peng (Guangzhou Medical University (KingMed school of Laboratory Medicine)) Yu, lin (The First Affiliated Hospital of Guangzhou Medical University) |
1 | Takoi H, Fujita K, Hyodo H. 2019. Acinetobacter baumannii can be transferred from contaminated nitrile examination gloves to polypropylene plastic surfaces. Am. J. Infect. Control 47: 1171-1175 DOI |
2 | Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, et al. 2021. Dietary Fe3O4 nanozymes prevent the injury of neurons and blood-brain barrier integrity from cerebral ischemic stroke. ACS Biomater. Sci. Eng. 7: 299-310. DOI |
3 | Nikolova MP, Chaval MS. 2020. Metal oxide nanoparticles as biomedical materials. Biomimetics (Basel, Switzerland) 5: 1-47. |
4 | Yin YY, Wu MX, Q T, He KM, Xu N, Shi Y, et al. 2019. Effect of iron based nanoenzyme on Salmonella typhimurium biofilm. Prog. Biochem. Biophys. 46: 587-595. |
5 | Liu ZW, Wang FM, Ren JS, Qu XG. 2019. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 208: 21-31. DOI |
6 | Mazur P, Skiba-Kurek I, Mrowiec P, Karczewska E, Drod R. 2020. Synergistic ROS-associated antimicrobial activity of silver nanoparticles and gentamicin against. Int. J. Nanomedicine 15: 3551-3562. DOI |
7 | Wang X, Wan R, Gu H, Fu GQ, Tang HQ, Hu GY. 2020. Well-water-dispersed N-trimethyl chitosan/Fe3O4 hybrid nanoparticles as peroxidase mimetics for quick and effective elimination of bacteria. J. Biomater. Sci. Polym. Ed. 31: 969-983. DOI |
8 | Pourhajibagher M, Hosseini N, Boluki E, Chiniforush N, Bahador A. 2020. Photoelimination potential of chitosan nanoparticles-indocyanine green complex against the biological activities of strains: a preliminary study in burn wound infections. J. Lasers Med. Sci. 11: 187-192. DOI |
9 | Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA , Abdullah SZ. 2019. Potential antimicrobial applications of Chitosan Nanoparticles (ChNP). J. Microbiol. Biotechnol. 29: 1009-1013 DOI |
10 | Luo Y, Yang QQ, Zhang D, Yan W. 2021. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J. Microbiol. Biotechnol. 31: 1-7 DOI |
11 | Tian MD, Zhu CM, Luo C, Gong MJ, Bi Y. 2014. Cytotoxicity of superparamagnetic iron oxide nanoparticles modified by chitosan or sodium oleate. Acad. J. Second Mil. Med. Univ. 35: 366-371. DOI |
12 | Mea HJ, Yong PVC, Wong EH. 2021. An overview of Acinetobacter baumannii pathogenesis: motility, adherence and biofilm formation. Microbiol. Res. 247: 126722. DOI |
13 | Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, et al. 2021. Comparative study of the difference in behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). J. Microbiol. Biotechnol. 31: 1060-1068 DOI |
14 | Song YL, Liang X, Song X. 2018. The study on the inhibition of Shigella biofilm formation by the exopolysaccharides of Lactobacillus plantarum-12. Food Res. Devel. 39: 144-151. |
15 | Sarshar M, Behzadi P, Scribano D, Palamara AT, Ambrosi C. 2021. Acinetobacter baumannii: an ancient commensal with weapons of a pathogen. Pathogens 10: 387 DOI |
16 | Cha MH, Kim SH, Kim S, Lee W, Kwak HS, Chi YM, et al. 2021. Antimicrobial resistance profile of Acinetobacter spp. isolates from retail meat samples under campylobacter-selective conditions. J. Microbiol. Biotechnol. 31: 733-739 DOI |
17 | Pakharukova N, Tuittila M, Paavilainen S. 2018. Structural basis for Acinetobacter baumannii biofilm formation. Proc. Natl. Acad. Sci. USA 115: 5558-5563. DOI |
18 | Wu J, Wang X, Wang Q, Lou SR, Li YY. 2018. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48: 1004-1076. DOI |
19 | Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan XY, Cai WB. 2019. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48: 3683-3704 DOI |
20 | Xu JB, Xing YY, Liu YT, Liu MZ, Hou XH. 2021. Facile in situ microwave synthesis of Fe3O4@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing. Anal. Chim. Acta 1179: 338825. DOI |
21 | Wang H, Joseph JA. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27: 612-616. DOI |
22 | Wang H, Li P, Yu D, Yan Z, Qu X. 2018. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 18: 3344-3351. DOI |
23 | Evelhoch SR. 2020. Biofilm and chronic nonhealing wound infections. Surg. Clin. North Am. 100: 727-732. DOI |
24 | Tang Y, Chou Y, Xu ZB, Gao LZ. 2018. Antibacterial mechanism and application of nano enzymes. Prog. Biochem. Biophys. 45: 118-128. |
25 | Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, et al. 2020. Reactive oxygen species oxidize STING and suppress interferon production. Elife 9: e57837. DOI |
26 | Gedefie A, Demsis W, Ashagrie M, Kassa Y, Tesfaye M, Tilahun M, et al. 2021. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infect. Drug Resist. 14: 3711-3719. DOI |
27 | Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. 2021. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10: 373 DOI |
28 | Saipriya K, Swathi CH, Ratnakar KS, Sritharan V. 2020. Quorum-sensing system in Acinetobacter baumannii: a potential target for new drug development. J. Appl. Microbiol. 128: 15-27. DOI |
29 | Jiao J, Fan K, Hu Z, Yan X, Du P. 2019. Development trend and priority areas of nanozyme. Sci. Sin. Chim. 49: 1442-1453. |
30 | Shahini Shams Abadi M, Mirzaei E, Bazargani A, Gholipour A, Heidari H, Hadi N. 2020. Antibacterial activity and mechanism of action of chitosan nanofibers against toxigenic Clostridioides (Clostridium) difficile isolates. Ann. Ig. 32: 72-80. |
![]() |