DOI QR코드

DOI QR Code

Magnetic Property of α-Fe2O3 Nanoparticles Prepared by Sonochemistry and Take-off Technique

  • Koo, Y.S. (Department of Physics, Inha University) ;
  • Yun, B.K. (Department of Physics, Inha University) ;
  • Jung, J.H. (Department of Physics, Inha University)
  • Published : 2010.03.31

Abstract

A new synthetic method for the formation of uniform $\alpha-Fe_2O_3$ nanoparticles was reported and their magnetic properties were investigated. The sonochemical synthesis and the subsequent take-off technique resulted in spherical shaped $\alpha-Fe_2O_3$ nanoparticles with an average diameter of 60 nm. The temperature- and applied magnetic field-dependent magnetization of the $\alpha-Fe_2O_3$ nanoparticles was explained by the sum of two contributions, i.e., the Morin transition and superparamagnetism, because the critical size for superparamagnetism was within the size variation of the nanoparticles.

Keywords

References

  1. G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH, Weinheim (2004).
  2. Y.-J. Suh, D.-S. Kil, K.-S. Chung, H.-S. Lee, and H. Shao, J. Magnetics 13, 106 (2008). https://doi.org/10.4283/JMAG.2008.13.3.106
  3. F. J. Morin, Phys. Rev. 78, 819 (1950). https://doi.org/10.1103/PhysRev.78.819.2
  4. J. O. Artmann, J. C. Murphy, and S. Foner, Phys. Rev. 138A, 912 (1965). https://doi.org/10.1103/PhysRev.138.A912
  5. N. Yamamoto, J. Phys. Soc. Jpn. 24, 23 (1968). https://doi.org/10.1143/JPSJ.24.23
  6. C. Rath, K. K. Sahu, and S. D. Kulkarni, Appl. Phys. Lett. 75, 4171 (1999). https://doi.org/10.1063/1.125572
  7. D. Jagadeesan, U. Mansoori, P. Mandal, A. Sundaresan, and M. Eswaramoorthy, Angew. Chem. Int. Ed. 47, 7685 (2008). https://doi.org/10.1002/anie.200802626
  8. L. Suber, D. Fiorani, P. Imperatori, S. Foglia, A. Montone, and R. Zysler, Nanostruct. Mater. 11, 797 (1999). https://doi.org/10.1016/S0965-9773(99)00369-4
  9. Y. S. Koo, K. M. Song, N. Hur, J. H. Jung, T-H. Jang, H. J. Lee, T. Y. Koo, Y. H. Jeong, J. H. Cho, and Y. H. Jo, Appl. Phys. Lett. 94, 032903 (2009). https://doi.org/10.1063/1.3073751
  10. J. H. Cho, S. G. Ko, Y. Ahn, and E. J. Choi, J. Magnetics 14, 124 (2009). https://doi.org/10.4283/JMAG.2009.14.3.124
  11. Y. S. Koo, D. H. Kim, and J. H. Jung, J. Korean Phys. Soc. 48, 677 (2006). https://doi.org/10.3938/jkps.48.677
  12. S. Mitra, S. Das, K. Mandal, and S. Chaudhuri, Nanotechnology 18, 275608 (2007). https://doi.org/10.1088/0957-4484/18/27/275608
  13. X. N. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, I. Nowik, Y. Koltypin, and A. Gedanken, J. Appl. Phys. 91, 4611 (2002). https://doi.org/10.1063/1.1457544
  14. L. Haibo, G. Jie, Z. Weitao, C. Gang, and Y. Ruihuang, Chinese Sci. Bull. 42, 344 (1997). https://doi.org/10.1007/BF02882479
  15. F. Bodker, M. F. Hansen, C. B. Koch, K. Lefmann, and S. Morup, Phys. Rev. B 61, 6826 (2000). https://doi.org/10.1103/PhysRevB.61.6826

Cited by

  1. nanoparticles prepared by continuous spray pyrolysis vol.5, pp.65, 2015, https://doi.org/10.1039/C5RA06261F
  2. ceramics vol.107, pp.1, 2015, https://doi.org/10.1063/1.4926613