• Title/Summary/Keyword: $F:SnO_2$ film

Search Result 56, Processing Time 0.038 seconds

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

Magnetic Properties of Sn1-xFexO2 Thin Films and Powders Grown by Chemical Solution Method

  • Li, Yong-Hui;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.161-164
    • /
    • 2009
  • Iron-doped $Sn_{1-x}Fe_xO_2$ (x = 0.0, 0.05, 0.1, 0.2, 0.33) thin films on Si(100) substrates and powders were prepared by a chemical solution process. The x-ray diffraction (XRD) patterns of the $Sn_{1-x}Fe_xO_2$ thin films and powders showed a polycrystalline rutile tetragonal structure. Thermo gravimetric (TG) - differential thermal analysis (DTA) showed the final weight loss above $430{^{\circ}C}$ for all powder samples. According to XRD Rietveld refinement of the powders, the lattice parameters and unit cell volume decreased with increasing Fe content. The magnetic properties were characterized using a vibrating sample magnetometer (VSM) and M$\ddot{o}$ssbauer spectroscopy. The thin film samples with x = 0.1 and 0.2 showed paramagnetic properties but thin films with x = 0.33 exhibited ferromagnetic properties at room temperature. Mossbauer studies revealed the $Fe^{3+}$ valence state in the samples. The ferromagnetism in the samples can be interpreted in terms of the direct ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen deficiency, which can be explained using the F-center exchange model.

Synthesis of titanium-doped indium oxide (ITiO) films for solar cells application using RF magnetron sputtering technology (RF 스퍼터링에 의한 ITiO 박막 제작과 태양전지에의 응용)

  • Paeng, Sung-Hwan;Kwak, Dong-Joo;Sung, Youl-Moon;Lee, Don-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1485_1486
    • /
    • 2009
  • Transparent conductive metal oxide films of $In_{2-x}Sn_xO_3$ (ITiO) and $In_{2-x}Sn_xO_3$ (ITO) were deposited by RF magnetron sputtering at relatively low substrate temperature (~$300^{\circ}C$) and at high rate (~10nm/min). Electrical and optical properties of the films were investigated as well as film structure and morphology, as it is compared with the commercial F:$SnO_2$ (FTO) glass. Near infrared ray transmittance of ITiO is the highest for wavelengths over 1000nm, which can increase dye sensitized compared to ITiO and FTO. Dye-sensitized solar cells (DSCs) were fabricated using the ITiO, ITO and FTO. Photoconversion efficiency ($\eta$) of DSC using ITiO is 5.5%, whereas 5.0% is obtained from DSC with ITO, both at 100mW/$cm^2$ light intensity.

  • PDF

Performances of a-Si:H thin-film solar cells with buffer layers at TCO/p a-SiC:H interface (CO/p a-SiC:H 계면의 버퍼층에 따른 비정질 실리콘 박막태양전지 동작특성)

  • Lee, Ji-Eun;Jang, Ji-Hun;Jung, Jin-Won;Park, Sang-Hyun;Jo, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.32-32
    • /
    • 2009
  • 실리콘 박막 태양전지에서 전면 투명전도막(TCO)은 태양전지의 전기, 광학적 특성을 결정하는 중요한 기능을 한다. ZnO:Al TCO는 기존에 사용되던 $SnO_2:F$와는 비정질 실리콘(a-Si:H) 박막 태양전지의 윈도우 층으로 사용되는 p a-SiC:H와의 일함수(work function) 차이로 인해 접촉전위(contact barrier)를 형성하게 되며 이로 인해 태양전지의 충진율(fill factor)이 $SnO_2:F$에 비해 감소하는 단점을 보인다. 본 연구에서는 ZnO:Al/p a-SiC:H 계면의 접촉전위 발생원인 및 태양전지 충진율 감소현상에 관한 정확한 원인규명을 위해 다양한 특성을 갖는 버퍼층을 삽입하여 계면특성 및 태양전지의 동작특성을 분석하고자 한다.

  • PDF

Synthesis of Solution-based Sb-doped SnO2 Thin Films

  • Koo, Bon-Ryul;An, Geon-Hyoung;Lee, Yu-jin;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.367-367
    • /
    • 2014
  • Transparent conductive oxides (TCOs) 박막은 가시광선영역에서의 높은 투과율과 낮은 저항 특성을 동시에 갖고 있어 최근 smart windows, solar cells, liquid crystal displays (LCD), organic light emitting devices (OLED)등과 같은 최첨단 기기에 필수적인 구성요소로 활발히 사용되고 있다. 따라서, 현재까지 FTO ($SnO_2:F$), ITO ($In_2O_3:Sn$), ATO ($SnO_2:Sb$)등과 같은 다양한 TCO들이 많은 연구자들에 의해 연구되고 있다. 그 중 ITO는 우수한 전기적(${\sim}10^{-4}{\Omega}cm$) 및 광학적(~85%) 특성 때문에 현재 상업적으로 활발히 응용되고 있는 대표적인 물질이다. 하지만 ITO의 주된 구성요소인 indium은 제한적인 매장량과 과도한 소비량 때문에 원가가 비싸다는 문제점이 있다. 반면에, ATO는 우수한 전기적(${\sim}10^{-3}{\Omega}cm$) 및 광학적(~80%) 특성뿐만 아니라 구성물질들의 매장량이 풍부하여 ATO의 원가가 저렴하다는 장점을 가지고 있어 현재 ITO을 대체 할 수 물질로 관심 받고 있다 [1]. 지금까지 우수한 특성을 갖는 ATO박막을 합성하는 방법으로 sol-gel spin coating, sputtering, spray pyrolysis, chemical vapor deposition (CVD)등이 알려져 있다. 이 중에서도, sol-gel spin coating과 spray pyrolysis은 solution기반의 합성법으로 분류되며 합성과정이 간단하고 비용이 저렴하다는 장점이 있고 현재까지 많은 연구가 보고되었다. 그러나, 진공기반이 아닌 우수한 특성을 갖는 solution기반의 ATO박막을 합성하기 위해서는 새로운 합성법의 개발이 학문적으로나 산업적으로도 매우 중요한 이슈이다. 따라서, 본 연구에서는 electrospray을 활용하여 solution기반의 ATO박막을 처음으로 합성하였다. 게다가 ATO박막에 열처리온도에 따른 구조, 화학, 전기, 광학적 특성을 확인하기 위하여 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), Hall Effect Measurement System, UV spectrophotometer를 사용하였다. 이러한 실험 결과들을 바탕으로 electrospray을 통해 합성된 solution기반의 ATO박막에 자세한 특성을 본 학회에서 다루도록 하겠다.

  • PDF

The Fabrication of ITO Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering Method and their Characterization (R.F. Magnetron Sputtering법을 이용한 ITO 박막 오존 가스센서의 제조 및 특성)

  • Kwon, Jung-Bum;Jung, Kyoung-Keun;Lee, Dong-Su;Ha, Jo-Woong;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.840-845
    • /
    • 2002
  • As an ozone gas sensor, the semiconductor gas sensor which is cheap, portable and simple in use and has a high sensitivity and an excellent selectivity, has been known as an alternative. In the present study, ITO ($In_2O_3 95%,\;SnO_2$ 5%) thin films were deposited on the alumina substrate by using R.F. magnetron sputtering method. The substrate temperature was 300$^{\circ}C$ and 500$^{\circ}C$, respectively and then some specimens were annealed at 500$^{\circ}C$ for 4h in air. ITO gas-sensing films formed crystallines before and after annealing. As results of gas sensitivity measurements to an ozone gas, the sensor deposited at 300$^{\circ}C$ and then annealed has the highest sensitivity (sensible below 1 ppm). As the operating temperature increased gradually, the sensitivity decreased but the response time and stability improved.

Light-managing Techniques at Front and Rear Interfaces for High Performance Amorphous Silicon Thin Film Solar Cells (고성능 비정질실리콘 박막태양전지를 위한 전후면 계면에서의 빛의 효율적 관리 기술)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.354-356
    • /
    • 2017
  • We focused on light management technology in amorphous silicon solar cells to suppress increase in absorber thickness for improving power conversion efficiency (PCE). $MgF_2$ and $TiO_2$ anti-reflection layers were coated on both sides of Asahi VU ($glass/SnO_2:F$) substrates, which contributed to increase in PCE from 9.16% to 9.81% at absorber thickness of only 150 nm. Also, we applied very thin $MgF_2$ as a rear reflector at n-type nanocrystalline silicon oxide/Ag interface to boost photocurrent. By reinforcing rear reflection, we could find the PCE increase from 10.08% up to 10.34% based on thin absorber about 200 nm.

Properties of ITO thin films fabricated by R.F magnetron sputtering (R.F. magnetron sputtering 법으로 제작한 ITO 박막의 특성)

  • Jeong, W.J.;Park, G.C.;Yoo, Y.T.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.51-57
    • /
    • 1995
  • Indium Tin Oxide (ITO) thin films have been fabricated by the rf magnetron sputtering technique with a target of a mixture $In_{2}O_{3}$ (90mol%) and $SnO_{2}$ (10mol%). We prepared ITO thin films with substrate temperature 100, 200, 300, 400, $500^{\circ}C$ and post-annealing temperature 300, 400, $500^{\circ}C$. And we analyzed X -ray diffraction patterns, electrical properties, transmission spectra and SEM photographs. As a result, the crystallinity, electrical conductivity and transmittance of ITO thin films were improved with increasing substrate temperature. But, as increasing post-annealing temperature in air, conductivity of the film was decreased. When the ITO thin film was fabricated with substrate temperature of $500^{\circ}C$ and thickness of $3000{\AA}$, its resistivity and transmittance were about $2{\times}10^{-4}{\Omega}cm$ and 85% or more, respectively.

  • PDF

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

Development of textured ZnO:Al films for silicon thin film solar cells (실리콘 박막 태양전지용 텍스처링 ZnO:Al 박막 개발)

  • Cho, Jun-Sik;Kim, Young-Jin;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.349-349
    • /
    • 2009
  • High quality ZnO:Al films were prepared on glass substrates by in-line RF magnetron sputtering and their surface morphologies were modified by wet-etching process in dilute acid solution to improve optical properties for application to silicon thin film solar cells as front electrode. The as-deposited films show a strong preferred orientation in [001] direction under our experimental conditions. A low resistivity below $5{\times}10^{-4}{\Omega}{\cdot}cm$ and high optical transmittance above 80% in a visible range are achieved in the films deposited at optimized conditions. After wet-etching, the surface morphologies of the films are changed dramatically depending on the deposition conditions, especially working pressure. The optical properties such as total/diffuse transmittance, haze and angular resolved distribution of light are varied significantly with the surface morphology feature, whereas the electrical properties are seldom changed. The cell performances of silicon thin film solar cells fabricated on the textured films are also evaluated in detail with comparison of commercial $SnO_2$:F films.

  • PDF