• 제목/요약/키워드: $D^{-1}$method

검색결과 11,794건 처리시간 0.039초

Convergence study of traditional 2D/1D coupling method for k-eigenvalue neutron transport problems with Fourier analysis

  • Boran Kong ;Kaijie Zhu ;Han Zhang ;Chen Hao ;Jiong Guo ;Fu Li
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1350-1364
    • /
    • 2023
  • 2D/1D coupling method is an important neutron transport calculation method due to its high accuracy and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-eigenvalue neutron transport problems is implemented. The analysis results present the divergence problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation, and two times 1D calculations per outer iteration. However, these attempts only could improve the convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly. Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the convergence behavior are also discussed. The results show that the choice of axial solver is a key point for the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide range of optical thickness region, which is superior to that of traditional SN method.

Analysis and comparison of the 2D/1D and quasi-3D methods with the direct transport code SHARK

  • Zhao, Chen;Peng, Xingjie;Zhang, Hongbo;Zhao, Wenbo;Li, Qing;Chen, Zhang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.19-29
    • /
    • 2022
  • The 2D/1D method has become the mainstream of the direct transport calculation considering the balance of accuracy and efficiency. However, the 2D/1D method still suffers from stability issues. Recently, a quasi-3D method has been proposed with axial Legendre expansion. Analysis and comparison of the 2D/1D and quasi-3D method is conducted in theory from the equation derivation. Besides, the C5G7 benchmark, the KUCA benchmark and the macro BEAVRS benchmark are calculated to verify the theory comparisons of these two methods with the direct transport code SHARK. All results show that the quasi-3D method has better stability and accuracy than the 2D/1D method with worse efficiency and memory cost. It provides a new option for direct transport calculation with the quasi-3D method.

Full-3D와 Quasi-1D Supercompact Multiwavelets의 비교 연구 (A Study on the Comparison Between Full-3D and Quasi-1D Supercompact Multiwavelets)

  • 박준표;이도형;권도훈
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1608-1615
    • /
    • 2004
  • CFD data compression methods based on Full-3D and Quasi-1D supercompact multiwavelets are presented. Supercompact wavelets method provide advantageous benefit that it allows higher order accurate representation with compact support. Therefore it avoids unnecessary interaction with remotely located data across singularities such as shock. Full-3D wavelets entails appropriate cross-derivative scaling function & wavelets, hence it can allow highly accurate multi-spatial data representation. Quasi-1D method adopt 1D multiresolution by alternating the directions rather than solving huge transformation matrix in Full-3D method. Hence efficient and relatively handy data processing can be conducted. Several numerical tests show swift data processing as well as high data compression ratio for CFD simulation data.

QP 방법과 McClellan 변환을 이용한 2차원 FIR Elliptic 필터 설계에 관한 연구 (A Study on QP Method and Two Dimensional FIR Elliptic Filter Design with McClellan Transform)

  • 김남수;이상준;김남호
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.268-271
    • /
    • 2003
  • There are several methods for the design of 2D filter. Notable among them is McClellan transform method. This transform allows us to obtain a high order 2D FIR filter through mapping the 1D frequency points of a 1D prototype FIR filter onto 2D frequency contours. We design 2D filter using this transform. Then we notice for mapping deviation of the 2D filter. In this paper, Quadratic programming (QP) method allows us to obtain coefficients of McClellan transform. Then we compare deviation of QP method with least-squares(LS) method. Elliptic filter is used for comparison. The optimal cutoff frequencies of a 1D filter are obtained directly from the QP method. Also several problem of LS method are solved.

  • PDF

Advanced two-level CMFD acceleration method for the 3D whole-core high-fidelity neutron adjoint transport calculation

  • Zhu, Kaijie;Hao, Chen;Xu, Yunlin
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.30-43
    • /
    • 2021
  • In the 2D/1D method, a global adjoint CMFD based on the generalized equivalence theory is built to synthesize the 2D radial MOC adjoint and 1D axial NEM adjoint calculation and also to accelerate the iteration convergence of 3D whole-core adjoint transport calculation. Even more important, an advanced yet accurate two-level (TL) CMFD acceleration technique is proposed, in which an equivalent one-group adjoint CMFD is established to accelerate the multi-group adjoint CMFD and then to accelerate the 3D whole-core adjoint transport calculation efficiently. Based on these method, a new code is developed to perform 3D adjoint neutron flux calculation. Then a set of VERA and C5G7 benchmark problems are chosen to verify the capability of the 3D adjoint calculations and the effectiveness of TL CMFD acceleration. The numerical results demonstrate that acceptable accuracy of 2D/1D adjoint calculations and superior acceleration of TL CMFD are achievable.

1dB 이득 억압점을 예측하기 위한 새로운 방법 (New Method for Predicting the 1 dB Gain Compression Point)

  • 방준호;엄순영;김석태;김동용
    • 한국통신학회논문지
    • /
    • 제19권9호
    • /
    • pp.1793-1801
    • /
    • 1994
  • 본 논문에서는 직렬 연결된 N-단 증폭기의 1dB 이득 억압점을 예측하기 위한 새로운 방법을 제안한다. 제안된 방법은 각 증폭기 제작사로부터 제공된 스칼라 데이터를 사용하여 각 증폭기의 입출력 전력 전달함수를 산출하고 이것을 각 증폭기의 입출력이 정합되었다는 가정하에 스칼라 형태로 곱함으로써 서브 시스템의 입출력 전력 전달 함수를 산출한다. 이렇게 구해진 전달 함수를 이용하여 역으로 서브 시스템의 1dB 이득 억압점을 예측할 수 있다. 제안된 방법은 스칼라 데이타의 수에 관계없이 사용할 수 있는 일반적인 방법이지만 본 논문에서는 2개의 스칼라 데이타(선형 전력 이득, 1dB 이득 억압점)와 3개의 스칼라 데이타(선형 전력 이득, 1dB와 0.5dB 이득 억압점)만을 사용할 경우에 대해서만 각각 분석된다. 제안된 방법의 유용성을 확인하기 위해 Ku-band에서 동작하는 두개의 표본 증폭기를 사용하여 기존의 방법과 제안된 방법에 의한 예측 결과와 실험에 의해 측정된 결과를 서로 비교하기 위해 함께 제시한다.

  • PDF

1D 방법에 의한 6MeV 전자선의 output 인자 결정 (Determination of output factors by 1D method for 6MeV electron)

  • 유명진
    • 한국의학물리학회지:의학물리
    • /
    • 제13권1호
    • /
    • pp.27-31
    • /
    • 2002
  • 6MeV 전자선의 output 인자를 결정하기 위해 간편하게 output 인자를 예측하는 수단인 1D(Dimension) 방법을 이용하였으며 그리고 1D 방법으로 결정된 output 인자를 개별적 beam cutout 하에서 직접 측정한 output 인자와 비교하여 1D 방법의 정확성을 분석하였다. 1D 방법은 정방형 field의 한 변과 항상 동일한 한 변을 갖는 사각형 field의 output 인자로서 규정되며, 임의의 사각형 field (X,Y)의 output은 1D output 인자의 곱으로 주어진다. 6MeV 전자선의 대단히 큰 정방형 field의 output은 1D 방법을 사용하면 실제보다 높은 값을 나타내지만 교정인자 CF=C.[(X-10)(Y-10)/$\mid$(X-10)(Y-10)$\mid^{1/2}]$를 적용하면 개별적 cutout하에 직접 측정된 output 인자와 잘 일치하였으며 그 오차 범위는 1% 이내였다.

  • PDF

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

A Rectangular Fin Optimization Including Comparison Between 1-D and 2-D Analyses

  • Kang, Hyung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2203-2208
    • /
    • 2006
  • Both 1-D and 2-D analytic methods are used for a rectangular fin optimization. Optimum heat loss is taken as 98% of the maximum heat loss. Temperature profile using 2-D analytic method and relative error of temperature along the fin length between 1-D and 2-D analytic methods are presented. Increasing rate of the optimum heat loss with the variation of Biot number and decreasing rate of that with the variation of the fin base length are listed. Optimum fin tip length using 2-D analytic method and relative error of that between 1-D and 2-D analytic methods are presented as a function of Biot numbers ratio.