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a b s t r a c t

2D/1D coupling method is an important neutron transport calculation method due to its high accuracy
and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small
axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-
eigenvalue neutron transport problems is implemented. The analysis results present the divergence
problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve
the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation,
and two times 1D calculations per outer iteration. However, these attempts only could improve the
convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly.
Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the
convergence behavior are also discussed. The results show that the choice of axial solver is a key point for
the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide
range of optical thickness region, which is superior to that of traditional SN method.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

2D/1D method couples a radial 2D transport equation and an
axial 1D equation for solving the 3D neutron Boltzmann equation. It
achieves high accuracy under a relatively low calculation burden.
This method was originally developed by two groups in Korea
during 2002e2007 [1e3]. One group at KAIST developed 2D/1D
fusion method for CRX code [4]. The other one at KAERI developed
2D/1D method for DeCART code [5] and later for nTRACER [6]. In
this paper, the 2D/1D coupling method is refer to the 2D/1D
method developed at KAERI. Several codes are developed based on
2D/1D coupling method like MPACT [7], NECP-X [8] and HNET [9].
In the early version of DeCART, it meets the divergence problem in
small axial mesh size [10]. Similarly, for the 3X3 partially rodded
lattice problem, MPACT also suffers from the divergence problem
when refining the axial mesh size [11]. To pursue high accuracy,
fine axial mesh size is usually required in the 2D/1D coupling
method and it may lead to the divergence problem. Therefore, it is
necessary to analyze the convergence behavior of 2D/1D coupling
hang).

by Elsevier Korea LLC. This is an
method, especially for the fine axial mesh size.
Fourier analysis is an important tool to analyze the asymptotic

convergence rate of the iteration [12e19]. A Fourier analysis of 2D/
1D coupling method has been implemented for solving 3D k-
eigenvalue diffusion problem [29]. With the help of the Fourier
analysis, the divergence problem may occur in small axial mesh
size. The stability of 2D transport/1D diffusion coupling method is
performed by Fourier analysis for the code DeCART [10]. It also
shown that the 2D/1D coupling method may fall down the diver-
gence problem. Please note that, in the above work, the diffusion
method is used as the 1D solver. While, in this study, the radial and
axial transport physics are preserved. This paper focus on the
divergence problem of 2D/1D coupling method in small axial mesh
size. In practice, two times 1D calculation per 2D/1D outer iteration,
as well as the increase of the inner iterations number of 2D or 1D
solver, is usually used to improve the convergence rate. In this
work, these common attempts are utilized and assessed for solving
the divergence problem. Moreover, the choice of axial solvers and
its effect on the convergence behavior are also discussed here. The
comparison between traditional SN axial solver and Discontinuous
Galerkin Finite Element Method based (DGFEM) SN [20] axial
solver is performed.
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The paper is organized as follows. In section 2, the basic theory
of 2D/1D iteration scheme is described. Following the iteration
scheme, the linearization of the major equations is derived and
presented. In section 4, the Fourier analysis of traditional SN based
2D/1D coupling method is derived. The divergence problem of 2D/
1D coupling method, as well as the possible tricks, are discussed in
section 5. Moreover, the effect of the axial solver on the stability is
also analyzed. In section 6, the numerical tests are performed to
evaluate the performance of Fourier analysis. Finally, the conclu-
sions are summarized in section 7.
2. Theory of 2D/1D iteration scheme

2.1. Formula of 2D/1D coupling method

The formula of 2D/1D coupling method of the lth iteration are
shown as follows. The 2D radial equation is shown in Eq. (1) and 1D
axial equation is shown in Eq. (2). These two equations couple with
each other by transverse leakage term. Due to the high accuracy
and good geometric adaptability, MOC is often applied to solve the
2D transport equation in the practical applications. In Fourier
analysis, the traditional 2D SN is often adopted as the radial solver,
instead of the MOC, to pursue the simplicity [10,21].

2D :

�
xm

v

vx
þhm

v

vy

�
fZ
m þStf

Z
m ¼ Ss

4p
fZ þ vSf

4pkeff
fZ � TLAxial

(1a)

TLAxial ¼
mm
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�
fT
m�fB

m

�
¼ 1
4pDz

�
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�
(1b)

1D : mm
v
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fXY
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XY
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4p
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4pkeff
fXY � TLRadial (2a)
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xm
D

�
fxR
m �fxL

m
�þhm

D

�
f
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m �f

yL
m
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4pD
�
JxR � JxL þ JyR � JyL
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Where m, h, x are the angle of Z, Y and X direction respectively. f is
the angular flux, andf is the scalar flux.St , Ss, Sf is total cross-
section, scattering cross-section, fission cross-section respectively.
v is the number of fission neutrons per fission, keff is the effective
eigenvalue, J is the net current,D is the coarse mesh radial size, and
Dz is the coarse mesh axial size. The superscript Z represents that
the variable is axially averaged and XY represents that the variable
is radially averaged. The superscript top, bottom represent the
coarse-mesh top and bottom boundary, xL, xR, yL, yR are the coarse-
mesh left and right boundary in X and Y direction respectively. The
subscript m represents the discrete angular. TLAxial is the axial
transverse leakage and TLRadial is the radial transverse leakage.
Here, the isotropic transverse leakage term is applied, which is
calculated by the net current. Isotropic scattering source term and
fission source term are also used for simplicity.

The flow chart of the 2D/1D iteration scheme for the k-eigen-
value neutron transport problem is shown in Fig. 1. Specifically,
there are twice 1D axial SN, a radial SN and a 3D adCMFD accel-
eration [8,13,22] in each outer iteration. For the lth outer iteration,
according to the 2D/1D iteration scheme, the radial transverse
leakage for the first time 1D axial SN is calculated from the (l� 1)th

CMFD. While, the axial transverse leakage is calculated from the lth

first-time 1D axial SN calculation. The radial transverse leakage for
the second 1D axial SN is calculated fromlth 2D radial SN
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calculation. For the first 1D axial SN calculation, the number of
inner iteration (sweep) refers to N1. Similarly, the number of inner
iteration (sweep) of 2D radial SN and the second 1D axial SN
calculation are N2 and N1, respectively. Also, the indexes of the
inner iteration are set as n1, n2 and n3 respectively. During the inner
iteration, the scattering source updates, while, the transverse
leakage term and fission source term keep as constant.

The spatial discretization of the 2D/1D coupling method is
shown in Fig. 2. Axially, the number of fine meshes per coarse mesh
is p. Radially, the number of fine meshes per coarse mesh is p2. In
Fig. 2, the p is set as 3 for example. I, J, K represent the index of
coarse mesh in X, Y, Z direction respectively.

Using SN method, the 2D equation is discretized as follows for
the 2D cartesian square mesh:

xm
h1

0B@f
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m;iþ1

2;j;K
�f

lþ1
2;n2þ1

m;i�1
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h1
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2;K
�f
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2;K
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lþ1
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4p
f
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4pkleff
fl
i;j;K � 1

4pDz

�
JtopI;J;K � JbottomI;J;K

�
(3a)

h1 ¼D=p (3b)

Where the subscripts i, j represent the index of fine mesh in the
coarse mesh in X, Y direction, respectively. The subscript K repre-
sents that the equation is axially averaged on coarse mesh K. iþ 1

2

and i� 1
2 are the fine mesh right and left boundary in X direction,

and jþ 1
2 and j� 1

2 are the boundary in Y direction. n2 represents the
n2
th inner iteration of scattering source, and h1 is the fine mesh

radial size. After one inner iteration, a new axially averaged scalar
flux is obtained by the updated angular flux:

f
lþ1

2;n2þ1
i;j;K ¼

XM
m¼1

wmf
lþ1

2;n2þ1
m;i;j;K (4)

It should be noted that the scalar flux calculated from 2D
equation is the axially averaged value of the fine mesh (i, j, K). SN
discretization needs supplement equation which is:
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1CA¼0 (5)

Here, diamond difference (DD) format is applied. The central
angular flux of the fine mesh (i, j, K) can be represented by the
boundary angular flux, which is:
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Eq. (6) is substituted into Eq. (3), then the 2D equation becomes:



Fig. 1. Flow chart of 2D/1D iteration scheme for k-eigenvalue problems.

Fig. 2. Square meshes of 2D/1D coupling method.
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4pDz
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(7b)

Similar as 2D equation, using SN, the 1D equation can be dis-
cretized as follows for the 1D cartesian square mesh:
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mm
h2

0B@f
lþ1
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2
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m;I;J;k�1
2
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(8a)

h2 ¼Dz=p (8b)

Where the subscripts I and J represent that the equation is radially
averaged on coarse mesh (I, J). kþ 1

2 and k� 1
2 are the fine mesh top

and bottom boundary. n denotes the nth inner iteration of scat-
tering source. After one inner iteration, a new radially averaged
scalar flux can be updated by the angular flux:

f
lþ1

2;nþ1
I;J;k ¼

XM
m¼1

wmf
lþ1

2;nþ1
m;I;J;k (9)

The central angular flux of the fine mesh (I, J, k) is presented by
the boundary angular flux using DD format, which is:

f
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m;I;J;k ¼1

2
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2

1CA (10)

Substituting Eq. (10) into Eq. (8), then the 1D equation becomes:

mm
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Then the coarse-mesh scalar flux is updated by solving the
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artificially diffusive CMFD (adCMFD) equation:

1
D

0B@Jlþ1
Iþ1

2;J;K
� Jlþ1

I�1
2;J:K

1CAþ 1
D
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2;K
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1CAþSa;CMflþ1
I;J;K ¼ vSf ;CM
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(12)

Where I±1
2, J±

1
2 and K±1

2 represent the left and right edge of coarse
mesh in X, Y, Z direction respectively. The boundary current J is
calculated by Eq. (13a) and Eq. (13b), here the Z direction is taken as
example. While, the X and Y direction is similar.

Jlþ1
I;J;Kþ1

2
¼ �Dad

Dz

�
flþ1
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�
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�
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2
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2

�
flþ1
I;J;K þflþ1

I;J;K�1

�
(13b)

Different from the traditional CMFD, adCMFD applies an artifi-
cially diffusive coefficient, which is:

Dad ¼
1

3St;CM
þ qD (14)

q is called the artificially diffusive coefficient, and here it is set as

0.25. The bDlþ1
2

I;J;K±1
2
is calculated from the boundary net current

calculated from 2D radial SN and 1D axial SN, which is:

bDlþ1
2

I;J;Kþ1
2
¼
Jlþ

1
2

I;J;Kþ1
2
þ Dad

Dz

�
f
lþ1
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�
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2

I;J;K

(15a)

bDlþ1
2

I;J;K�1
2
¼
J
lþ1

2
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2
þ Dad

Dz

�
f
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�
f
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2
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2

I;J;K�1

(15b)

After the adCMFD calculation, the fine mesh scalar flux of 2D
radial SN and 1D axial SN are updated by the coarse mesh scalar
flux of CMFD, which is:

flþ1
i;j;k ¼f

lþ1
2

i;j;k

flþ1
I;J;K

f
lþ1

2
I;J;K

; ði; j; kÞ2ðI; J;KÞ (16)
3. Linearization

In order to perform Fourier analysis to evaluate the performance
of 2D/1D coupling method, the 2D SN Eq. (7), 1D SN Eq. (11), 3D
adCMFD Eq. (12), as well as the scalar updated process Eq. (16) are
linearized near the exact solution. The solutions are expressed as a
function of error term ε≪1 for a 3D homogeneous medium k-
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eigenvalue problem.
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1
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¼ Sa

vSf
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By summing up all the coarse meshes, it can be obtained that:

εzlþ1 ¼0 (18)

For the first 1D axial SN calculation as shown in Fig. 1, the radial
transverse leakage term is calculated from the CMFD calculation
and the formula is shown in Eq. (19a). Substituting Eq. (17c, d, e)
into 1D axial Eq. (11), the linearized equation becomes Eq. (19b):
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For the second 1D axial SN calculation, the radial transverse
leakage term is calculated from the 2D radial calculation, taking the
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left boundary net current in X-direction for example:
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For brief, the error term of the net current is simplified as:
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The linearized second 1D axial SN calculation is as follows:
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Eq. (17a, b, f) is substituted into 2D radial Eq. (7), then the
linearized 2D equation becomes Eq. (23):
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m;i;j�1
2;K

1CA

¼ Ss

4p
~f
l;n2
i;j;K þSa

4p
~f
l
i;j;K � 1

4pDz

0B@~JtopI;J;K �~J
bottom
I;J;K

1CA

(23)

After two 1D calculations and one 2D radial calculation, the net
current of the coarse mesh is obtained using Eq. (13) and Eq. (15).
Substituting Eq. (17h-j) into Eq. (13), the linearized net current
becomes:

~J
lþ1
I;J;Kþ1

2
¼�Dad

Dz

�
~f
lþ1
I;J;Kþ1� ~f

lþ1
I;J;K

�
þDad

Dz

0B@~f
lþ1

2
I;J;Kþ1� ~f

lþ1
2

I;J;K

1CAþ~J
lþ1

2

I;J;Kþ1
2

(24a)

~J
lþ1
I;J;K�1

2
¼�Dad

Dz

�
~f
lþ1
I;J;K� ~f

lþ1
I;J;K�1

�
þDad

Dz

0B@~f
lþ1

2
I;J;K� ~f

lþ1
2

I;J;K�1

1CAþ~J
lþ1

2

I;J;K�1
2

(24b)

Then the net currents are substituted into the 3D CMFD Eq. (12),
the linearized form of the CMFD equation is presented as:
Dz

Dad

0B@~Jlþ12
Iþ
1
2
;J;K

�~J
lþ
1
2

I�
1
2
;J;K

þ~J
lþ
1
2

I;Jþ
1
2
;K

�~J
lþ
1
2

I;J�
1
2
;K

1CAþ D
Dad

0B@~Jlþ12
I;J;Kþ

1
2

�~J
lþ
1
2

I;J;K�
1
2

1CAþ

þD
Dz

0B@~f
lþ
1
2

I;J;Kþ1 � ~f
lþ
1
2

I;J;K�1 � 2~f
lþ
1
2

I;J;K

1CA¼Dz

D

�
~f
lþ1
Iþ1;J;K � ~f

lþ1
I�1;J;K þ ~f

lþ1
I;Jþ1;K �
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The fine-mesh scalar fluxes of 1D axial meshes and 2D radial
meshes are updated by the CMFD coarse-mesh scalar flux using Eq.
(16). The linearized form of Eq. (16) is:

~f
lþ1
i;j;k ¼ ~f

lþ1
2

i;j;k þ ~f
lþ1
I;J;K � ~f

lþ1
2

I;J;K ; ði; j; kÞ2ðI; J;KÞ (26)
4. Fourier analysis

To theoretically analyze the convergence rate of the iteration,
Fourier analysis is usually applied [16,17]. The first step of the
Fourier analysis is the linearization near the exact solutions, which
is derived in Section 3. The error terms of the linearized equations
are expressed as Fourier mode in X, Y, Z direction, and then the
error transition matrix can be obtained. The spectral radius of the
error transition matrix indicates the convergence rate of the iter-
ation. The Fourier analysis is carried out in one single coarse mesh
with periodic boundary conditions [16e19]. Following the standard
Fourier analysis, the Fourier ansatz expands the error terms as a
function of Fourier frequency as Eq. (27):

~f
lþ1

2;n2

m;i;j;K ¼A
lþ1

2;n2

m;i;j;Ke
iStlxxi eiStlyyj eiStlzzk (27a)

~f
lþ1

2;n2

m;i±1
2;j±

1
2;K

¼A
lþ1

2;n2

m;i±1
2;j±

1
2;K

eiStlxxi eiStlyyj eiStlzzk (27b)

~f
lþ1

2;n
m;I;J;k ¼B

lþ1
2;n

m;I;J;ke
iStlxxi eiStlyyj eiStlzzk (27c)

~f
lþ1

2;n
m;I;J;k±1

2
¼B

lþ1
2;n

m;I;J;k±1
2
eiStlxxi eiStlyyj eiStlzzk (27d)

~f
lþ1

2
i;j;K ¼C

lþ1
2

i;j;Ke
iStlxxi eiStlyyj eiStlzzk (27e)

~f
lþ1

2
I;J;k¼D

lþ1
2

I;J;ke
iStlxxi eiStlyyj eiStlzzk (27f)

~f
lþ1

2
I;J;K ¼ Elþ

1
2eiStlxxi eiStlyyj eiStlzzk (27g)

~f
lþ1
I;J;K ¼ Flþ1eiStlxxi eiStlyyj eiStlzzk (27h)

~J
lþ1

2

I±1
2;J±

1
2;K±

1
2
¼Glþ1

2

I±1
2;J±

1
2;K±

1
2
eiStlxxi eiStlyyj eiStlzzk (27i)

~J
lþ1
I±1

2;J±
1
2;K±

1
2
¼Hlþ1

I±1
2;J±

1
2;K±

1
2
eiStlxxi eiStlyyj eiStlzzk (27j)

The essential part of the Fourier analysis is to derive the
Dz

D

0B@~f
lþ
1
2

Iþ1;J;K � ~f
lþ
1
2

I�1;J;K þ ~f
lþ
1
2

I;Jþ1;K � ~f
lþ
1
2

I;J�1;K �4~flþ1
I;J;K

1CA
~f
lþ1
I;J�1;K �4~flþ1

I;J;K

�
þ D
Dz

�
~f
lþ1
I;J;Kþ1 � ~f

lþ1
I;J;K�1 �2~flþ1

I;J;K

� (25)
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transition matrix of the fine-mesh scalar flux error term. In the 2D/
1D coupling method, the fine-mesh scalar flux errors contain two
parts, which are p2 number 2D radial fine mesh scalar flux errors
and p number 1D axial finemesh scalar flux errors. These two scalar
flux errors are expressed by Fourier ansatz in Eq. (27e) and Eq. (27f).
The vector Sl is defined, which stores the 2D radial fine-mesh scalar
flux errors and 1D axial fine-mesh scalar flux errors as shown in Eq.
(28). The first p elements are the 1D axial fine-mesh scalar flux
errors and the next p2 elements are the 2D radial fine-mesh scalar
flux errors.

Sl ¼

266666666666664

~f
l
I;J;1

/
~f
l
I;J;p

~f
l
1;1;K

/
~f
l
p;p;K

377777777777775
ðpþp2Þ�1

(28)

The vector B
lþ1

2;n
m contains p number boundary angular flux er-

rors of the 1D axial fine-mesh as shown in Eq. (29).

B
lþ1

2;n
m;I;J;k±1

2
¼

2666666666664

~f
lþ1

2;n
m;I;J;12
/

~f
lþ1

2;n

m;I;J;2p�1
2

3777777777775
p�1

(29)

Fourier ansatz is applied into the first-time linearized 1D Eq.
(19b). At lth source iteration calculation step, the lþ 1

2 intermediate

step boundary angular flux Blþ
1
2;n1þ1

m;I;J;k±1
2
of 1D axial SN is obtained as

follows:

Blþ
1
2;n1þ1

m;I;J;k±1
2
¼Y�1

m

�
C1E1S

l;n1 þC2E1S
l þC3S

l
�

(30)

Where Ym is a matrix of the 1D axial SN transport calculation with
the size of p� p, C1 is the matrix of the scattering source error term,
C2 is the matrix of the absorption error term, and C3 is the matrix of
the radial transverse leakage error term. E1 is the transform matrix
that convert the scalar flux error matrix of 2D/1D into the matrix of
1D SN scalar flux error, and E is the identity matrix. The detailed
expressions of the matrices are:

Ym ¼

2666666664

�mm
h2

þ St

2
mm
h2

þ St
2 0 0 0

0 �mm
h2

þ St
2

mm
h2

þ St
2 0 0

/ / / / /�
mm
h2

þ St

2

�
eiStlzD 0 0 0 �mm

h2
þ St

2

3777777775
p�p

(31a)
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C1 ¼

2666666666664

Ss

4p
0 0 0 0

0 Ss
4p 0 0 0

0 0 Ss
4p 0 0

0 0 0 Ss
4p 0

0 0 0 0 Ss
4p

3777777777775
p�p

(31b)

C2 ¼

2666666666664

Sa

4p
0 0 0 0

0 Sa
4p 0 0 0

0 0 Sa
4p 0 0

0 0 0 Sa
4p 0

0 0 0 0 Sa
4p

3777777777775
p�p

(31c)

E1 ¼
�
Ep�p 0p�p2

	
p�ðpþp2Þ (31d)

The presentation of the radial transverse leakage termmatrix C3
is provided later in Eq. (45). During the inner iteration, the 1D axial
scalar flux errors are updated and the 2D radial scalar flux errors
keep constant. The updated scalar flux is shown in Eq. (32a) and the
next inner iteration is displayed as Eq. (32e):

Dlþ1
2 ¼

XM
m¼1

wmYYmB
lþ1

2;n1
m ¼ Rn1

1 Sl (32a)

YYm ¼

26666666664

1
2

1
2 0 0 0

0 1
2

1
2 0 0

/ / / / /

1
2
eiStlzDz 0 0 0 1

2

37777777775
p�p

(32b)

Slþ
1
2;n1 ¼

"
Rn1
1
E3

#
Sl ¼RRn1

1 Sl (32c)

E3 ¼
�
0p2�p Ep2�p2

	
p2�ðpþp2Þ (32d)

B
lþ1

2;n1þ1
m ¼Y�1

m
�
C1E1RR

n1
1 þC2E1 þC3

�
Sl (32e)

Here, the presentations of Rn1
1 and RRn1

1 depend on the n1, when
n1 ¼ 1:

R11 ¼
XM
m¼1

wmYYmY�1
m ðC1E1 þC2E1 þC3Þ (33a)

RR11 ¼
"
R11
E3

#
(33b)

When n1 > 1



Fig. 3. Mesh notation of the 2D calculation.
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Rn1
1 ¼

XM
m¼1

wmYYmY�1
m

�
C1E1RR

n1�1
1 þC2E1 þ C3

�
(33c)

RRn1
1 ¼

"
Rn1
1
E3

#
(33d)

After N1 times inner iterations of the first 1D calculation, the
axial transverse leakage for the 2D calculation is obtained using Eq.
(1b). According to the periodic boundary condition, the top
boundary net current error term can be calculated by the bottom
boundary net current error term, which is shown in Eq. (34a). The
axial transverse leakage error term is shown in Eq. (34b):

Glþ1
2

I;J;K�1
2
¼
XM
m¼1

wmmmB
lþ1

2;N1

m;I;J;0

¼
XM
m¼1

wmmmY
�1
m

�
C1E1RR

N1�1
1 þC2E1 þC3

�
Sl

(34a)

TLaxial ¼
1

4pDz

�
~J
top
I;J;K �~J

bottom
I;J;K

�
¼ eiStlzDz � 1

4pDz
G
lþ1

2

I;J;K�1
2
¼ P1S

l (34b)

Then the Fourier ansatz is applied into the 2D linearized Eq. (23).
The intermediate fine mesh boundary angular flux of 2D SN is
calculated as:

A
lþ1

2;n2þ1
m;i±1

2;j±
1
2;K

¼X�1
m

�Ss

4p
E4E3S

l;n2 þSa

4p
E4E3S

l � E4P1S
l
�

(35)

Where Xm is the matrix of the 2D SN transport calculation with
size of p2 � p2, E4 is a transform matrix that converts the matrix
with size of p2 into matrix with size of 2p2. Defining the 2D radial

fine-mesh boundary angular flux error matrix Alþ1
2;n2þ1

m;i±1
2;j±

1
2;K

, the no-

tation of the 2D mesh is shown in Fig. 3. It contains 2p2 fine mesh
edge angular flux that ordered from bottom to top.

The detailed presentations of the matrices are:
Xm ¼

26666666666664

�hm
h1

þ St

4
½0/0�p�1

�xm
h1

þ St
4

xm
h1

þ St
4 ½0/0�p�2

hm
h1

þ

0 �hm
h1

þ St
4 ½0/0�p�1

�xm
h1

þ St
4

xm
h1

þ St
4 ½0/0

« « « « « «

1 ½0/0�p�1 �1 �1 ½0/0�p�2 1

0 1 ½0/0�p�1 �1 �1 ½0/0

« « « « « «
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A
lþ1

2;n2

m;i±1
2;j±

1
2;K

¼

266666666666666666666664

~f
lþ1

2;n2

m;1;12

/

~f
lþ1

2;n2

m;p;12

«

~f
lþ1

2;n2

m;12;p

/

~f
lþ1

2;n2

m;2p�1
2 ;p

«

377777777777777777777775
2p2�1

(36b)

E4 ¼
h
Ep2�p2 ;0p2�p2

i
2p2�p2

(36c)

During the inner iteration, the 2D radial scalar flux errors and
the scattering source error are updated. The 1D axial scalar flux
errors, the absorption term and the axial transverse leakage error
term keep constant. The updated scalar flux is presented in Eq.
(37a) and the following inner iteration is presented in Eq. (37d):
St
4 / ½0/0�

�p�2
hm
h1

þ St
4 ½0/0�

« «

/ ½0/0�
�p�2 1 ½0/0�

« «

37777777777775
2p2�2p2

(36a)
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Clþ1
2 ¼

XM
m¼1

wmXXmA
lþ1

2;n2
m ¼ Rn2

2 Sl (37a)
XXm ¼

2666664
1
4

½0/0�p�1
1
4

1
4 ½0/0�p�2

1
4 / ½0/0�

0 1
4 ½0/0�p�1

1
4

1
4 ½0/0�p�2

1
4 ½0/0�

« « « « « « « «

3777775
p2�2p2

(37b)
Slþ
1
2;n2 ¼

"
E1
Rn2
2

#
Sl ¼RRn2

2 Sl (37c)

Alþ1
2;n2þ1

m;i±1
2;j±

1
2;K

¼X�1
m

�Ss

4p
E4E3RR

n2
2 þSa

4p
E4E3 � E4P1

�
Sl (37d)

Here, the presentations of Rn2
2 and RRn2

2 depend on the n2, when
n2 ¼ 1:

R12 ¼
XM
m¼1

wmXXmX�1
m

�Ss

4p
E4E3 þ

Sa

4p
E4E3 � E4P1

�
(40a)

RR12 ¼
"
E1
R12

#
(40b)

When n2 > 1:

Rn2
2 ¼

XM
m¼1

wmXXmX�1
m

�Ss

4p
E4E3RR

n2�1
2 þSa

4p
E4E3 � E4P1

�
(40c)

RRn2
2 ¼

"
E1
Rn2
2

#
(40d)

After N2 2D SN inner iterations, the radial boundary net current
can be obtained by accumulating the edge angular flux. The left
boundary net current is presented as Eq. (41a) and the behind
boundary net current is presented as Eq. (41b).
L1 ¼
1
p

26664
hm
D

�
eiStlyD � 1

�0B@1;/1|fflffl{zfflffl}
p

;0;0;/

1CA;
xm
D

�
eiStlxD � 1

��
0
p
;1;0

p
;1;

«

1357
G
lþ1

2

I�1
2;J;K

¼1
p

Xp
j¼1

XM
m¼1

wmxmA
lþ1

2;N2

m;12;j;K

¼1
p

Xp
j¼1

XM
m¼1

wmxmX
�1
m

�Ss

4p
E4E3RR

N2�1
2 þSa

4p
E4E3�E4P1

�
Sl

(41a)

G
lþ1

2

I;J�1
2;K

¼1
p

Xp
i¼1

XM
m¼1

wmhmA
lþ1

2;N2

m;i;12;K

¼1
p

Xp
i¼1

XM
m¼1

wmhmX
�1
m

�Ss

4p
E4E3RR

N2�1
2 þSa

4p
E4E3�E4P1

�
Sl

(41b)

The right boundary and the front boundary net current are
presented by the left boundary and behind boundary net current
according to the periodic boundary condition, which is:

G
lþ1

2

Iþ1
2;J;K

¼G
lþ1

2

I�1
2;J;K

eiStlxD (42a)

Glþ1
2

I;Jþ1
2;K

¼Glþ1
2

I;J�1
2;K

eiStlyD (42b)

Therefore, the radial transverse leakage term for the second 1D
SN calculation can be obtained:

1
4pD

�
~J
xR
I;J;K �~J

xL
I;J;K þ~J

yR
I;J;K �~J

yL
I;J;K

�
¼ eiStlxD � 1

4pD
G
lþ1

2

I�1
2;J;K

þ eiStlyD � 1
4pD

Glþ1
2

I;J�1
2;K

¼ P2S
l

(43)

The intermediate matrix is defined as follows:
/

�37775
p�2p2

(44a)
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L2 ¼

2666666666664

mm
Dz

�
eiStlzDz � 1

��
1; 0

p�1

�
«0B@0;/;0|fflfflffl{zfflfflffl}
p

1CA
«

3777777777775
2p2�p

(44b)

Similar as the presentation of P2, the radial transverse leakage
term for the first 1D calculation C3 can be presented as follows:

C3 ¼
0@eiStlxD � 1

4pDp

Xp
j¼1

XM
m¼1

wmxm þ eiStlyD � 1
4pDp

Xp
i¼1

XM
m¼1

wmhm

1A
�
 
St

4p

�
Ym L1
Xm L2

��1� Eðpþp2Þ�ðpþp2Þ
0p2�ðpþp2Þ

�!
(45)

After N1 times 1D axial SN calculation and N2 times 2D radial SN
calculation, the intermediate scalar flux error term is presented as:

Slþ
1
2 ¼
24RN1

1

RN2
2

35Sl ¼ TSl (46)

The radial angular flux Eq. (43) is substituted into the second 1D
SN calculation Eq. (19b). The form of the second 1D SN calculation is
similar as the first 1D SN calculation and it is shown in Eq. (47):

B
lþ1

2;n3þ1
m;I;J;k±1

2
¼Y�1

m

�
C1E1TS

l;n3 þC2E1TS
l � P2S

l
�

(47)

Same as the first 1D SN calculation, during inner iteration, the
scattering error term is updated, while, the fission source and the
radial transverse leakage is fixed. The updated scalar flux and the
next inner iteration are presented as:

Dlþ1
2 ¼

XM
m¼1

wmYYmB
lþ1

2;n3
m ¼ Rn3

3 Sl (48a)
Table 1
Test problem specifications.

Stðcm�1Þ vSf ðcm�1Þ Ssðcm�1Þ p Quadrat

1.0 0.01 0.9 2 S6-Gaus

Elþ
1
2


Dz

D

��
eiStlxD þ e�iStlxD þ eiStlyD þ e�iStlyD �4

�
þ D
Dz

�
eiStlzDz þ e�

þ

264 Dz

Dod

�
eiStlxD � 1

�
G
lþ1

2

I�1
2;J;K

þ Dz

Dod

�
eiStlyD � 1

�
G
lþ1

2

I;J�1
2;K

þ D
Dod

�
eiStl

¼ Flþ1

Dz

D

��
eiStlxD þ e�iStlxD þ eiStlyD þ e�iStlyD �4

�
þ D
Dz

�
eiStlz
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Slþ
1
2;n3 ¼

"
Rn3
3
E3

#
Sl ¼RRn3

3 Sl (48b)

Blþ
1
2;n3þ1

m ¼Y�1
m
�
C1E1RR

n3
3 T þC2E1T � P2

�
Sl (48c)

Here, the presentations of Rn3
3 and RRn3

3 depend on the n3, when
n3 ¼ 1:

R13 ¼
XM
m¼1

wmYYmY�1
m ðC1E1T þ C2E1T � P2Þ (49a)

RR13 ¼
"
R13
E3

#
(49b)

When n3 > 1

Rn3
3 ¼

XM
m¼1

wmYYmY�1
m

�
C1E1RR

n3�1
3 T þC2E1T � P2

�
(49c)

RRn3
3 ¼

"
Rn3
3
E3

#
(49d)

Then a newly updated axial boundary net current is obtained by
accumulating the boundary angular flux, which is:

G
lþ1

2

I;J;K�1
2
¼
XM
m¼1

wmmmB
lþ1

2;N3

m;I;J;0

¼
XM
m¼1

wmmmY
�1
m

�
C1E1RR

N3�1
3 T þC2E1T � P2

�
Sl

(50)

The updated scalar flux error matrix is shown:

Slþ
1
2 ¼
24RN3

3

RN2
2

35Sl ¼ T2S
l (51)

After the 1D axial SN calculation and the 2D radial calculation,

six net currents Glþ1
2

I±1
2;J±

1
2;K±

1
2
are supplied to 3D CMFD Eq. (25).
ure set DzðcmÞ DðcmÞ Order of DGFEM

sian Legendre 1.0e10.0 1.0 2

iStlzDz �2
���

zDz �1
�
G
lþ1

2

I;J;K�1
2

375Sl
Dz þ e�iStlzDz �2

���
(52)



Table 2
Outer iterations for 3X3 partially lattice problem (Axial 36 layer).

Case Number of 1st 1D sweeping Number of 2D sweeping Number of 2nd 1D sweeping Keff Number of outer iterations

Reference — — — 1:21566±0:00028 —

1 1 1 1 1.21597 30
2 2 1 1 1.21597 29
3 5 1 1 1.21597 27
4 5 1 5 1.21597 25
5 5 2 5 1.21597 23
6 5 5 5 1.21597 20
7 5 2 0 1.21597 36
8 5 2 2 1.21597 25

Fig. 4. Spectral radius of different axial mesh size.

Fig. 5. Spectral radius of different N1.

Fig. 6. Spectral radius of different N2.

Fig. 7. The influence of two times 1D axial SN calculation per outer iteration.

B. Kong, K. Zhu, H. Zhang et al. Nuclear Engineering and Technology 55 (2023) 1350e1364

1359



B. Kong, K. Zhu, H. Zhang et al. Nuclear Engineering and Technology 55 (2023) 1350e1364
From Eq. (52), it can be derived that:
d¼ Flþ1 � Elþ
1
2 ¼

�
Dz
�
eiStlxD � 1

�
Glþ1

2

I�1
2;J;K

þ Dz
�
eiStlyD � 1

�
Glþ1

2

I;J�1
2;K

þ D
�
eiStlzDz � 1

�
Glþ1

2

I;J;K�1
2

�
Dad

Dz
D

�
eiStlxD þ e�iStlxD þ eiStlyD þ e�iStlyD � 4

�þ Dad
D
Dz

�
eiStlzDz þ e�iStlzDz � 2

�Sl (53)
The fine-mesh scalar fluxes are updated by the coarse mesh
scalar flux as Eq. (26), the final fine-mesh error transition matrix is
shown:

Slþ1 ¼ T2S
l þ d ¼ T3S

l (54)

Where T3 is the final error transition matrix of the whole calcula-
tion process. The spectral radius is the maximum eigenvalue of the
error transition matrix for all the combinations of Fourier fre-
quencies [23,24]:

r¼max
�
w
�
lx; ly; lz

��¼max
�
maxðabsðeigðT3ÞÞÞ;clx; ly; lz

�
(55)

The Fourier frequency lx; ly; lz are shown in Eq. (54). Lx, Ly, Lz is
the domain size of the problem in X, Y, Z direction.

lx ¼ 2pi
StLx

; i ¼ 1;2;/I � 1; I ¼ Lx
D

(56a)

ly ¼ 2pj
StLy

; j ¼ 1;2;/J � 1; J ¼ Ly
D

(56b)

lz ¼ 2pk
StLz

; k ¼ 1;2;/K � 1;K ¼ Lz
Dz

(56c)
Fig. 8. The influence of p on the spectral radius for traditional scheme.
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5. Results and discussion

The convergence performance of traditional 2D/1D coupling
method for solving neutron transport k-eigenvalue problem is
discussed here. The computational domain here is a homogeneous
cube model with the size of 10cm� 10cm� ð10 � 100Þcm and
periodic boundary conditions. The computational parameters are
listed in Table 1.
5.1. Divergence problem in small axial mesh size

In this part, the divergence problem of 2D/1D coupling method
is shown and analyzed. Here, set the number of inner iterations of
1D calculation(N1/N3) as 2 and the number of inner iterations of 2D
calculation (N2) as 1. For other combinations of the inner iterations,
the phenomenon is similar. Keeping the radial mesh size as a
constant as 1.0 cm, the axial mesh size changes from 1.0 to 10.0 cm.
The convergence behavior of different axial mesh size is shown in
Fig. 4. When the axial mesh size is 10.0 cm, the 2D/1D coupling
method converge in all the optical thickness region. However,
when finer the axial mesh size, the 2D/1D method diverge in small
optical thickness region. Moreover, with the decrease of the axial
mesh size, the divergence problem becomemore andmore serious.
In practice, utilizing the fine axial mesh size can improve the ac-
curacy but it may lead to the divergence of the 2D/1D coupling
method [10,11]. The Fourier analysis results show the divergence
phenomenon in small axial mesh size. In section 5.2, several at-
tempts are tried to solve the divergence problem in small axial
mesh size. Therefore, the axial mesh size is set as 1.0 cm in the next
section.
Fig. 9. The influence of 1D axial SN solver on the spectral radius.



Table 3
DGFEM-2 scheme calculation results for 108/216 axial layer.

Case Keff Number of outer iterations

108 axial layers 1.21578 31
216 axial layers 1.21578 43
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5.2. Common attempts for solving the divergence problem

Empirically evidence suggests that more than one inner itera-
tion can supply a tight convergence. Therefore, a common attempt
for solving the divergence problem is that changing the number of
inner iterations of 2D or 1D calculation. Firstly, by keeping N2 and
N3 as constant and changing N1, the convergence behavior is shown
in Fig. 5. N2 is set as 6, N3 is set as 1, other combinations of N2 and N3
achieve the similar results. It can be clearly seen that the increase of
N1 achieves better convergence rate. Also, with the increase of the
N1, the decrement of the spectral radius slackens. It is noted that the
increase of the 1D SN calculation cannot solve the divergence
problem. For optical thickness between 10�2 to 1, all the strategies
fail.

Secondly, the effect of inner iterations number of 2D calculation
is analyzed. Here, N1 is set as 6 and N3 is set as 2, other combina-
tions of N1 and N3 achieve the similar trend. The results are shown
in Fig. 6. It can be seen in the figure that when N2 is larger than 4,
the curves tend to be consistence. In small optical thickness around
10�2 to 100, all the iteration strategies diverge. When N2 is set as 1,
the 2D/1D method converge in optical thickness region between 1
and 3. However, the increase of N2 lead to the divergence in this
optical thickness region. On the other side, the increase of N2 do
benefit to the spectral radius for high optical thickness region. The
smallest spectral radius for N2 ¼ 2 is around 0.7 and for N2 > 4 is
around 0.85. In all, the change of N2 cannot solve the divergence
problem in small axial mesh size.

In practice, two 1D axial SN calculations per outer iteration, as
shown in Fig. 1, can improve the convergence rate. The influence of
two 1D axial SN calculations on the spectral radius is shown in
Fig. 7. Here N1 and N2 are set as 6 and1 to clearly present the result.
As a comparison, the other strategy is applied, which the second 1D
axial SN calculation is deleted and is labeled as N3 ¼ 0 in the figure.
In this strategy, the fine-mesh scalar flux error transition matrix is
shown in Eq. (46), and the axial net current for 3D CMFD is calcu-
lated from the first 1D axial SN calculation as shown in Eq. (34). The
results show that the usage of two 1D axial SN calculations per
outer iteration can reduce the spectral radius of the system. With
the increase of the N3, the acceleration effect is more obvious.
However, the usage of two 1D axial SN calculations cannot solve the
divergence problem in small optical thickness region.

It can be seen from Figs. 5 to 7 that for small optical thickness
region from 10�2 to 100, all the combinations among N1, N2, N3
diverge. The change the number of inner iterations and the usage of
two 1D SN calculations per outer iteration cannot solve the diver-
gence problem.
Fig. 10. The geometry of 3X3 part
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5.3. The influence of the 1D axial SN solver

The 1D axial SN solver plays an important role in the 2D/1D
coupling method. A comparison between the traditional axial 1D
SN based 2D/1D coupling method (traditional scheme) and 1D axial
DGFEM SN based 2D/1D coupling method (DGFEM scheme) is
made here. The calculation flow of DGFEM scheme is the same as
the traditional scheme, the only difference is that it adopts DGFEM
SN as 1D axial solver. Different from the traditional SN FDM, DGFEM
introduced the spatial basis functions to represent the solutions
within each mesh. Here, the axial DGFEM SN mesh size is the same
as the CMFD coarsemesh size. The detailed theory of the DGFEM SN
is shown in Ref. [20].

The errors of DGFEM scheme contains two parts, which are the
different orders of scalar fluxmoments in axial direction and the 2D
radial fine mesh scalar flux. Instead of the axial fine-mesh scalar
flux errors in traditional scheme, the DGFEM scheme contains
(orderþ1) number of axial fluxmoment errors. The Fourier analysis
of the DGFEM scheme is similar as the Fourier analysis of the
traditional scheme here shown in Section 4. The detailed lineari-
zation and the Fourier analysis process of DGFEM scheme is shown
in the previous work [28]. Different from the previous work, here
two times 1D DGFEM SN calculation are applied here. The disposal
of the 2-nd time 1D calculation, especially the presentation of the
radial transverse leakage term from the 2D radial calculation is the
same as the traditional scheme as shown in Eq. (45)- Eq. (51).

Two kinds of DGFEM schemes tested here, which labeled as
DGFEM-1 and DGFEM-2. It is worth noted that the 0-th order scalar
flux moment is the coarse-mesh scalar flux in DGFEM scheme. In
DGFEM-1 scheme, this 0-th order scalar flux moment in the scat-
tering source term is updated during the 1D SN calculation. In
DGFEM-2 scheme, this 0-th order scalar flux moment in the scat-
tering source term is fixed. In both two DGFEM schemes, the 0-th
order scalar flux moment in the fission source term is fixed.

Here, the number of the 1st time1D inner sweeping, the number
of the 2D inner sweeping and the number of the 2nd time 1D inner
sweeping are set as 6, 6 and 2, respectively. For DGFEM scheme, the
axial SN mesh size is the same as the coarse mesh size, which
means the number of fine mesh per coarse mesh (p) is 1 in axial
ially rodded lattice problem.



Fig. 11. The geometry of C5G7 benchmark.
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direction. However, to obtain the enough accuracy, for traditional
scheme, p is often higher than 1 in axial direction. For traditional
scheme, the influence of axial p on the spectral radius is shown in
Fig. 8.

It can be seen in Fig. 8 that the value of p has slightly influence
on the spectral radius. To make a comparisonwith DGFEM scheme,
in the traditional scheme, p is set as 1 in axial direction.

The influence of the 1D axial SN solver on the spectral radius is
shown in Fig. 9. It can be seen clearly that the traditional scheme
and DGFEM scheme without fixed 0-th order scalar flux moment
(DGFEM-1) diverge in small optical thickness region between 10�2

to 100. The DGFEM scheme with fixed 0-th order scalar flux
moment (DGFEM-2) solve this problem. For DGFEM-1, the 0-th
order scalar flux moment in the scattering source term is updated
during 1D axial SN calculation. For DGFEM-2, the 0-th order scalar
flux moment in the scattering source term keeps constant during
the 1D axial SN calculation, which means the updated 0-th order
scalar flux moment is abandoned. Then after the 2D radial calcu-
lation, the 0-th order scalar flux moment is updated by the coarse-
mesh scalar flux calculated from 2D radial calculation.

A reasonable explanation for the divergence problem in small
Table 4
Outer iterations for 3D C5G7-UR benchmark.

Case Number of 1st 1D sweeping Number of 2D sweeping

1 1 1
2 5 1
3 10 1
4 10 1
5 10 2
6 10 5
7 10 2
8 10 2

Table 5
Calculation results comparisons for 3D C5G7 benchmark.

Case DGFEM-2 scheme

Error of Keff[ [20]] Computation time/hours No. Outer iteration

UR -1pcm 4.18 20
RA 9pcm 4.46 21
RB 3pcm 4.37 21
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optical thickness region for traditional scheme is that in Eq. (11),
the right side of the iteration contains negative elements. The right
side of Eq. (11) contains the scattering source term, fission source
term and the radial transverse leakage term. The expression of the
radial transverse leakage term is shown in Eq. (45). Detailed for-
mula of the term L2 in Eq. (45) is shown in Eq. (44b). When the axial
mesh size Dz is small, the item mm

Dz
ðeiStlzDz �1Þ in L2 maybe a huge

negative value and lead to the negative radial transverse leakage
term. In this case, the total source of Eq. (11) is probably negative.
Then the scalar flux and the axial net current calculated from 1D
axial calculation diverge and lead to the divergence of 2D/1D
coupling method. In DGFEM scheme, the high order equations
contain no transverse leakage moment so that the total sources for
high order equations are always positive. It means that the high-
order flux moments converge in small optical thickness region.
The zero-order equation contains the radial transverse leakage
term moment. Especially in small optical thickness region, this
termmay lead to the total source to be negative and then lead to the
divergence of 0-th order scalar flux moment. It also explains the
divergence problem of DGFEM-1 in small optical thickness region.
If keeping the 0-th order scalar flux moment constant during the
1D axial calculation like DGFEM-2, all the different-order flux
moments converge. The axial net current is calculated by different-
order flux moments in DGFEM scheme. Therefore, in this case, the
axial net current supplied to 2D radial calculation is reasonable and
promise the convergence of 2D/1D coupling method in small op-
tical thickness region.

For traditional scheme, when axial p is set as 1, the axial fine
mesh is the same size of the coarse mesh. Then, the axial scalar flux
is kept constant during 1D axial calculation, and is updated through
coarse-mesh scalar flux like what DGFEM-2 scheme does. A
possible speculation is that in this case, the traditional scheme may
solve the divergence problem in small optical thickness region.
Unfortunately, this speculation fails. When the negative total
source exists, the 1D traditional SN calculation process may have
problems and results in the unreasonable angular flux. For tradi-
tional SN, the scalar flux and the boundary net current are calcu-
lated by the angular flux. Even though the scalar flux is fixed, the
boundary net current that used to calculate the axial transverse
leakage term as shown in Eq. (7b) maybe unreasonable. Then the
unreasonable axial transverse leakage may lead to the divergence
of the 2D/1D coupling method in small optical thickness region.
Compared with the traditional scheme, DGFEM-2 promises the
Number of 2nd 1D sweeping Number of outer iterations

1 47
1 41
1 36
10 29
10 25
10 22
0 38
5 28

Traditional scheme

Error of Keff[ [20]] Computation time/hours No. Outer iteration

7pcm 5.09 25
1pcm 5.04 25
�14pcm 5.06 25
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convergence of the axial net current in small optical thickness
region.

In all, the traditional SN based 2D/1D coupling method meets
the divergence problem in small optical thickness region. For
DGFEM SN based 2D/1D coupling method, the divergence problem
can be solved by keeping the 0-th order scalar flux moment fixed
during 1D axial calculation and updating it after the 2D radial
calculation.

6. Numerical tests

6.1. 3 � 3 partially rodded lattice problem

To further evaluate the performance of Fourier analysis, a 3X3
partially rodded lattice problem, designed by Jarrett [11], is utilized
as shown in Fig. 10. In radial direction, a square of UO2 fuel pins is
arranged with a guide tube in the center. In axial direction, there
are two fuel layers and one moderator layer. The thickness of each
layer is 21.42 cm, and the control rod is inserted 42.84 cm from top
to bottom. All the radial boundaries and bottom boundary are
reflective, and the top boundary is vacuum. In Jarrett's work, it is
found that the eigenvalue does not appear to converge with
increasing axial refinement [11]. When there are more than 72
planes axially, it suffers from the divergence problem.

In this work, the ray spacing of 2D MOC is fixed as 0.01 cm S8
quadrature set is implemented for angle discretization. This
benchmark is conducted by single processor. The convergence
criteria of eigenvalue and the scalar flux are 10�6 and 10�5. When
the number of the axial plane is set as 36, the traditional SN based
2D/1D coupling method converge. The influence of the number of
inner iterations on the convergence is analyzed, and the results are
shown in Table 2. The reference eigenvalue is calculated by Monte
Carlo code OpenMC [25]. It can be seen in case 1 to 3 that the in-
crease of the number of 1st time 1D sweeping decrease the number
of outer iterations from 30 to 27, indicating that the spectral radius
is reduced which is consistent with the Fourier analysis. Compared
among the case 4e6, it is concluded that with the increase of the
number of 2D sweeping, the number of outer iterations decrease
from 25 to 20, agreeing with the Fourier analysis. According to the
results of case 5, 7 and 8, it could draw a conclusion that the
application of two times 1D SN calculation per outer iteration can
obviously reduce the spectral radius. The outer iteration in this case
reduces from 36 to 23. In all the cases, the eigenvalue is the same,
whose error is 31pcm error.

When the number of axial plane is set as 108 and 216, which
means smaller axial mesh size, the DGFEM-1 scheme and the
traditional SN based 2D/1D coupling method diverge. While, the
DGFEM-2 scheme with fixed 0-th order scalar flux moment
converge in this case. The results of DGFEM-2 scheme are shown in
Table .3. When the size of axial mesh is smaller than 0.595 cm (108
layer), the eigenvalue has little difference. The error of the 2D/1D
coupling method is 12 pcm, which is smaller than that under 36-
layers. With the increase of axial plane, the number of outer iter-
ations increases from 31 to 43. The results show that choice of axial
solver is a key issue for the convergence of 2D/1D method, and 1D
DGFEM based 2D/1D coupling method with fixed 0-th order scalar
flux moment is able to solve the divergence problem in small axial
mesh size.

6.2. 3D C5G7 benchmark

To promise the generality of the results, the 3D C5G7 bench-
marks [26] are tested. The geometry of the C5G7 benchmark is
shown in Fig. 11 [20]. The related geometric parameters and the
cross-sections can be seen in the reference [27]. In axial direction,
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the size of the benchmark is 64.26 cm and is divided into 36 layers.
The benchmark contains 51 lattices in radial direction and each
lattice is subdivided into 5 rings and 16 sectors. This benchmark is
conducted by 144 processors (36 for axial direction and 4 for radial
direction), and the spatial decomposition parallel strategy is used.
The convergence criteria of eigenvalue and the scalar flux are 10�6

and 10�5.
Firstly, the influence of the inner iterations on the convergence

are analyzed and shown in Table .4. The phenomenon of 3D C5G7
benchmark is similar as the 3 � 3 partially rodded problem.
Compared among the case 1 to 3, it can be clearly seen that the
increase of the 1st time 1D sweeping significantly decrease the
number of outer iterations from 47 to 36, which is consistent with
the Fourier analysis. Increasing the number of 2D sweeping can also
decrease the spectral radius, where the number of outer iterations
decreases from 29 to 22 for case 4e6. According to the results of the
case 5,7 and 8, it can be concluded that the implementation of two
times 1D SN calculation per outer iteration can reduce the spectral
radius.

To further verify the convergence improvement by employing
the DGFEM as 1D solver, a comparison between the DGFEM-2
scheme and the traditional scheme are made here. To promise
the tight convergence, the number of inner iterations for the 1D
calculation and the 2D calculation are set as 10 and 2 respectively.
The calculation results of the 3D C5G7 benchmarks are shown in
Table .5. It can be seen that the convergence behavior of the
DGFEM-2 scheme is better than the traditional scheme. For UR case,
the number of outer iterations for the traditional scheme is 25,
whereas for the DGFEM-2 scheme is only 20. For RA and RB cases,
the number of outer iterations for the DGFEM-2 scheme is also
smaller than the traditional scheme, which decreases from 25 to 21.
Also, the computation time of the DGFEM-2 scheme is also smaller
than the traditional scheme, which is about 85% of the traditional
scheme.
7. Conclusion

2D/1D coupling method is an important neutron transport
method. However, 2D/1D coupling method often suffers from the
divergence problem in small axial mesh size. To analyze the
convergence problem, a Fourier analysis of traditional SN based 2D/
1D coupling method for k-eigenvalue neutron transport problems
is implemented in this work. Fourier analysis results theoretically
show the divergence problem of 2D/1D coupling method. Several
common attempts are tested to solve this problem. The influence of
the 1D axial solver is also analyzed by comparing the traditional SN
and DGFEM SN based 2D/1D coupling method. The detailed con-
clusions are shown.

1. 2D/1D coupling method meets the divergence problem in small
axial mesh size. When refining the axial mesh size, the 2D/1D
coupling method may diverge in the thin optical thickness
region.

2. The increase of the 1D axial SN inner iteration can reduce the
spectral radius. However, with the increase of the number of
inner iterations, the decrement of the spectral radius slackens,
and the couplingmethod still suffers from divergence in the thin
optical thickness region.

3. Increasing the number of 2D radial SN inner iteration do harm to
the spectral radius in the small optical thickness region between
1 and 3. But it is benefit to the optical thickness region higher
than 3. When the number of 2D radial SN inner iteration is
higher than 4, the increase of the iteration has little impact on
the spectral radius. The divergence problem in small optical
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thickness region cannot be solved by changing the number of
inner iterations.

4. Two times 1D axial calculation per outer iteration can reduce the
spectral radius. The increment of the second 1D axial SN inner
iteration can reduce the spectral radius and when the inner
iteration is higher than 4, the curves tend to be consistent.
However, the method still cannot solve the divergence problem
in small optical thickness region.

5. The 1D axial solver has great influence on the convergence. For
traditional 1D SN based 2D/1D coupling method, when finer the
axial mesh size, it meets the divergence problem in small optical
thickness region. When applying DGFEM based SN as axial 1D
solver with fixed 0-th order scalar flux moment, it converges in
all the optical thickness region.
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