• 제목/요약/키워드: $D[X]_{N_v}$

검색결과 247건 처리시간 0.029초

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

LOCALLY PSEUDO-VALUATION DOMAINS OF THE FORM D[X]Nv

  • Chang, Gyu-Whan
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1405-1416
    • /
    • 2008
  • Let D be an integral domain, X an indeterminate over D, $N_v = \{f{\in}D[X]|(A_f)_v=D\}.$. Among other things, we introduce the concept of t-locally PVDs and prove that $D[X]N_v$ is a locally PVD if and only if D is a t-locally PVD and a UMT-domain, if and only if D[X] is a t-locally PVD, if and only if each overring of $D[X]N_v$ is a locally PVD.

LOCALLY DIVIDED DOMAINS OF THE FORM $D[X]_N_v$

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Let D be an integral domain, X be an indeterminate over D, and $N_v=\{f{\in}D[X]{\mid}(A_f)_v=D\}$. In this paper, we introduce the concept of t-locally divided domains, and we then prove that $D[X]_{N_v}$ is a locally divided domain if and only if D is a t-locally divided UMT-domain, if and only if D[X] is a t-locally divided domain.

ON ALMOST PSEUDO-VALUATION DOMAINS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.343-349
    • /
    • 2011
  • Let D be an integral domain, $D^w$ be the $w$-integral closure of D, X be an indeterminate over D, and $N_v=\{f{\in}D[X]{\mid}c(f)_v=D\}$. In this paper, we introduce the concept of $t$-locally APVD. We show that D is a $t$-locally APVD and a UMT-domain if and only if D is a $t$-locally APVD and $D^w$ is a $PvMD$, if and only if D[X] is a $t$-locally APVD, if and only if $D[X]_{N_v}$ is a locally APVD.

S/C/X-대역 GaN 저잡음 증폭기 MMIC (A S/C/X-Band GaN Low Noise Amplifier MMIC)

  • 한장훈;김정근
    • 한국전자파학회논문지
    • /
    • 제28권5호
    • /
    • pp.430-433
    • /
    • 2017
  • 본 논문은 0.25 um GaN HEMT 공정을 이용하여 S/C/X-대역에서 저항 피드백 구조의 저잡음 증폭기 MMIC에 관한 연구이다. GaN 소자는 높은 항복 전압과 에너지 밴드갭 그리고 고온에서 안정성을 갖는 고출력 소자로서 장점을 가진다. 따라서 높은 선형성을 가지는 GaN 소자를 이용한 수신기는 리미터 없이 구현할 수 있기 때문에 수신기의 잡음 지수가 개선되고, 수신기 모듈의 크기를 줄일 수 있다. 제안한 GaN 저잡음 증폭기 MMIC는 S/C/X-대역에서 15 dB 이상의 이득, 3 dB 이하의 잡음 지수, 13 dB 이상의 입력 반사 손실, 그리고 8 dB 이상의 출력 반사 손실을 가진다. GaN 저잡음 증폭기 MMIC는 드레인 전압 20 V, 게이트 전압 -3 V일 때, 70 mA의 전류를 소모한다.

NEIGHBORHOOD CONDITION AND FRACTIONAL f-FACTORS IN GRAPHS

  • Liu, Hongxia;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1157-1163
    • /
    • 2009
  • Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called a fractional f-factor if $d^h_G$(x)=f(x) for all x $\in$ for all x $\in$ V (G), where $d^h_G$ (x) = ${\Sigma}_{e{\in}E_x}$ h(e) is the fractional degree of x $\in$ V(F) with $E_x$ = {e : e = xy $\in$ E|G|}. In this paper it is proved that if ${\delta}(G){\geq}{\frac{b^2(k-1)}{a}},\;n>\frac{(a+b)(k(a+b)-2)}{a}$ and $|N_G(x_1){\cup}N_G(x_2){\cup}{\cdots}{\cup}N_G(x_k)|{\geq}\frac{bn}{a+b}$ for any independent subset ${x_1,x_2,...,x_k}$ of V(G), then G has a fractional f-factor. Where k $\geq$ 2 be a positive integer not larger than the independence number of G, a and b are integers such that 1 $\leq$ a $\leq$ f(x) $\leq$ b for every x $\in$ V(G). Furthermore, we show that the result is best possible in some sense.

  • PDF

MARK SEQUENCES IN 3-PARTITE 2-DIGRAPHS

  • Merajuddin, Merajuddin;Samee, U.;Pirzada, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권1호
    • /
    • pp.41-56
    • /
    • 2007
  • A 3-partite 2-digraph is an orientation of a 3-partite multi-graph that is without loops and contains at most two edges between any pair of vertices from distinct parts. Let D(X, Y, Z) be a 3-partite 2-digraph with ${\mid}X{\mid}=l,\;{\mid}Y{\mid}=m,\;{\mid}Z{\mid}=n$. For any vertex v in D(X, Y, Z), let $d^+_{\nu}\;and\;d^-_{\nu}$ denote the outdegree and indegree respectively of v. Define $p_x=2(m+n)+d^+_x-d^-_x,\;q_y=2(l+n)+d^+_y-d^-_y\;and\;r_z=2(l+m)+d^+_z-d^-_z$ as the marks (or 2-scores) of x in X, y in Y and z in Z respectively. In this paper, we characterize the marks of 3-partite 2-digraphs and give a constructive and existence criterion for sequences of non-negative integers in non-decreasing order to be the mark sequences of some 3-partite 2-digraph.

  • PDF

CENTRAL LIMIT TYPE THEOREM FOR WEIGHTED PARTICLE SYSTEMS

  • Cho, Nhan-Sook;Kwon, Young-Mee
    • 대한수학회지
    • /
    • 제41권5호
    • /
    • pp.773-793
    • /
    • 2004
  • We consider a system of particles with locations { $X_{i}$ $^{n}$ (t):t$\geq$0,i=1,…,n} in $R^{d}$ , time-varying weights { $A_{i}$ $^{n}$ (t) : t $\geq$0,i = 1,…,n} and weighted empirical measure processes $V^{n}$ (t)=1/n$\Sigma$$_{i=1}$$^{n}$ $A_{i}$ $^{n}$ (t)$\delta$ $X_{i}$ $^{n}$ (t), where $\delta$$_{x}$ is the Dirac measure. It is known that there exists the limit of { $V_{n}$ } in the week* topology on M( $R^{d}$ ) under suitable conditions. If { $X_{i}$ $^{n}$ , $A_{i}$ $^{n}$ , $V^{n}$ } satisfies some diffusion equations, applying Ito formula, we prove a central limit type theorem for the empirical process { $V^{n}$ }, i.e., we consider the convergence of the processes η$_{t}$ $^{n}$ ≡ n( $V^{n}$ -V). Besides, we study a characterization of its limit.t.

ON THE RATES OF THE ALMOST SURE CONVERGENCE FOR SELF-NORMALIZED LAW OF THE ITERATED LOGARITHM

  • Pang, Tian-Xiao
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1137-1146
    • /
    • 2011
  • Let {$X_i$, $i{\geq}1$} be a sequence of i.i.d. nondegenerate random variables which is in the domain of attraction of the normal law with mean zero and possibly infinite variance. Denote $S_n={\sum}_{i=1}^n\;X_i$, $M_n=max_{1{\leq}i{\leq}n}\;{\mid}S_i{\mid}$ and $V_n^2={\sum}_{i=1}^n\;X_i^2$. Then for d > -1, we showed that under some regularity conditions, $$\lim_{{\varepsilon}{\searrow}0}{\varepsilon}^2^{d+1}\sum_{n=1}^{\infty}\frac{(loglogn)^d}{nlogn}I\{M_n/V_n{\geq}\sqrt{2loglogn}({\varepsilon}+{\alpha}_n)\}=\frac{2}{\sqrt{\pi}(1+d)}{\Gamma}(d+3/2)\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^{2d+2}}\;a.s.$$ holds in this paper, where If g denotes the indicator function.