• Title/Summary/Keyword: $Cu_3Si$

Search Result 760, Processing Time 0.027 seconds

Thermal Stability of Ti-Si-N as a Diffusion Barrier (Cu와 Si간의 확산방지막으로서의 Ti-Si-N에 관한 연구)

  • O, Jun-Hwan;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2001
  • Amorphous Ti-Si-N films of approximately 200 and 650 thickness were reactively sputtered on Si wafers using a dc magnetron sputtering system at various $N_2$/Ar flow ratios. Their barrier properties between Cu (750 ) and Si were investigated by using sheet resistance measurements, XRD, SEM, RBS, and AES depth profiling focused on the effect of the nitrogen content in Ti-Si-N thin film on the Ti-Si-N barrier properties. As the nitrogen content increases, first the failure temperature tends to increase up to 46 % and then decrease. Barrier failure seems to occur by the diffusion of Cu into the Si substrate to form Cu$_3$Si, since no other X- ray diffraction intensity peak (for example, that for titanium silicide) than Cu and Cu$_3$Si Peaks appears up to 80$0^{\circ}C$. The optimal composition of Ti-Si-N in this study is $Ti_{29}$Si$_{25}$N$_{46}$. The failure temperatures of the $Ti_{29}$Si$_{25}$N$_{465}$ barrier layers 200 and 650 thick are 650 and $700^{\circ}C$, respectively.ely.

  • PDF

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

A Study on Cu(B)/Ti/SiO2/Si Structure for Application to Advanced Manufacturing Process (차세대 공정에 적용 가능한 Cu(B)/Ti/SiO2/Si 구조 연구)

  • Lee Seob;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.246-250
    • /
    • 2004
  • We have investigated the effects of boron added to Cu film on the Cu-Ti reaction and microstructural evolution of Cu(B) alloy film during annealing of Cu(B)/Ti/$SiO_2$/Si structure. The result were compared with those of Cu(B)/$SiO_2$ structure to identify the effects of Ti glue layers on the Boron behavior and the result grain growth of Cu(B) alloy. The vacuum annealing of Cu(B)/Ti/$SiO_2$ multilayer structure allowed the diffusion of B to the Ti surface and forming $TiB_2$ compounds at the interface. The formed $TiB_2$ can act as a excellent diffusion barrier against Cu-Ti interdiffusion up to $800^{\circ}C$. Also, the resistivity was decreased to $2.3\mu$$\Omega$-cm after annealing at $800^{\circ}C$. In addition, the presence of Ti underlayer promoted the growth Cu(l11)-oriented grains and allowed for normal growth of Cu(B) film. This is in contrast with abnormal growth of randomly oriented Cu grains occurring in Cu(B)/$SiO_2$ upon annealing. The Cu(B)/Ti/$SiO_2$ structure can be implemented as an advanced metallization because it exhibits the low resistivity, high thermal stability and excellent diffusion barrier property.

A study on Electrical and Diffusion Barrier Properties of MgO Formed on Surface as well as at the Interface Between Cu(Mg) Alloy and $SiO_2$ (Cu(Mg) alloy의 표면과 계면에서 형성된 MgO의 확산방지능력 및 표면에 형성된 MgO의 전기적 특성 연구)

  • Jo, Heung-Ryeol;Jo, Beom-Seok;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.160-165
    • /
    • 2000
  • We have investigated the electrical and diffusion barrier properties of MgO produced on the surface of Cu (Mg) alloy. Also the diffusion barrier property of the interfacial MgO between Cu alloy and $SiO_2$ has been examined. The results show that the $150\;{\AA}$-MgO layer on the surface remains stable up to $700^{\circ}C$, preventing the interdiffusion of C Cu and Si in Si/MgO/Cu(Mg) structure. It also has the breakdown voltage of 4.5V and leakage current density of $10^{-7}A/\textrm{cm}^2/$. In addition, the combined structure of $Si_3N4(100{\AA})/MgO(100{\AA})$ increases the breakdown voltage up to lOV and reduces the leakage current density to $8{\tiems}10^{-7}A/\textrm{cm}^2$. Furthermore, the interfacial MgO formed by the chemical reac­t tion of Mg and $SiO_2$ reduces the diffusion of copper into $SiO_2$ substrate. Consequently, Cu(Mg) alloy can be applied as a g gate electrode in TFT /LCDs, reducing the process steps.

  • PDF

A Study on Aging and Wear Behaviors of Al-5Mg-X(Si, Cu, Ti)/SiCp Composites Fabricated by Pressureless Infiltration Method (무가압 침투에 의하여 제조된 Al-5Mg-X(Si, Cu, Ti)/SiCp 복합재료의 시효 및 마멸특성에 관한 연구)

  • Woo, Kee-Do;Kim, Sug-Won;Na, Hong-Suk;Moon, Ho-Jung
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.300-306
    • /
    • 2000
  • The objective of this work was to investigate the effects of SiC particle size(50, 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on aging behavior in Al-5Mg-X(Si,Cu,Ti)/SiCp composites fabricated by pressureless infiltration method using hardness and wear test, scanning electron microscopy(SEM) and differential scanning calorimetry(DSC). The peak aging time in Al-5Mg-X(Si, Cu, Ti)/SiCp(50, 100 ${\mu}m$) composites is shorter than Al-5Mg-0.3Si alloy.The peak aging time of 50 ${\mu}m$ SiC particle reinforced Al-5Mg-X(Si,Cu,Ti) composites is shorter than those of 100 ${\mu}m$ SiC particle reinforced of Al-5Mg-X(Si,Cu,Ti) composites. The Al-5Mg-0.3Si-0.1Cu-0.1Ti/SiCp(50 ${\mu}m$) composites aged at $180^{\circ}C$ has higher hardness and better wear resistance than any other aged composite.The aging effect is promoted by the addition of Si and Cu in Al-5Mg/SiCp composites, so the wear resistance of Al-5Mg/SiCp composites with Si and Cu elements is enhanced by the aging treatment.

  • PDF

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF

Effects of Ti Thickness on Ti Reactions in Cu/Ti/SiO2/Si System upon Annealing (Cu/Ti/SiO2/Si 구조에서 Ti 층 두께가 Ti 반응에 미치는 효과)

  • Hong, Sung-Jin;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.889-893
    • /
    • 2002
  • The reactions of $Cu/Ti/SiO_2$ structures at temperatures ranging from 200 to $700^{\circ}C$ have been studied for various Ti thicknesses. The reaction products initially formed, at around $300^{\circ}C$, were a series of Cu-Ti intermetallics ($Cu_3$Ti/CuTi) with the oxygen dissolved in the Ti moving from the compounds into the remaining unreacted Ti. At $500^{\circ}C$, the $Cu_3$Ti was converted into Cu-rich intermetallics, $Cu_4$Ti, which grew at the expense of the CuTi due to the increased oxygen content in the Ti. In addition, the outdiffusion of Ti, to the Cu surface, and the $Ti-SiO_2$ reactions, caused an abrupt increase in the oxygen content in the Ti layer, which placed thermodynamic restraints on further Ti reactions. Furthermore, thinner Ti layers showed a higher increasing rate of oxygen accumulation for the same consumption of Ti, which led to significantly reduced Ti consumption. The $SiO_2$ film under the Ti diffusion barrier was more easily destroyed with increasing Ti thickness.

Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy (Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리)

  • Park, Sang-Gyu;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Removal of NO Using CuO/3Al2O3 · 2SiO2 Catalyst Impregnated Ceramic Candle Filters (산화구리 촉매담지 세라믹 캔들필터를 이용한 NO 제거)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.291-302
    • /
    • 2004
  • The CuO/$3AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters for nitrogen oxides removal were prepared by porous mullite($3AL_2O_3{\cdot}2SiO_2$) support and CuO catalyst deposited on this support to achieve uniformly dispersed CuO deposition, which are impregnated into the pores of available alumino-silicate ceramic candle filter. The CuO/3$AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters were characterized by XRD, BET, air permeability, pore size, SEM and catalytic tests in the reduction of NOx by NH$_3$. The observed effects of CuO/3$AL_2O_3{\cdot}2SiO_2$ impregnated ceramic candle filters in SCR reaction are as follows : (1) when the content of CuO catalyst increased further, activity of NO increased. (2) NO conversion at first increased with temperature and then decreased at high temperatures (above 40$0^{\circ}C$), possibly due to the occurrence of the ammonia oxidation reaction. (3) In pilot plant test for 3 months, NO conversion was greater than 90%.