DOI QR코드

DOI QR Code

A Study on Cu(B)/Ti/SiO2/Si Structure for Application to Advanced Manufacturing Process

차세대 공정에 적용 가능한 Cu(B)/Ti/SiO2/Si 구조 연구

  • 이섭 (국민대학교 신소재공학부) ;
  • 이재갑 (국민대학교 신소재공학부)
  • Published : 2004.04.01

Abstract

We have investigated the effects of boron added to Cu film on the Cu-Ti reaction and microstructural evolution of Cu(B) alloy film during annealing of Cu(B)/Ti/$SiO_2$/Si structure. The result were compared with those of Cu(B)/$SiO_2$ structure to identify the effects of Ti glue layers on the Boron behavior and the result grain growth of Cu(B) alloy. The vacuum annealing of Cu(B)/Ti/$SiO_2$ multilayer structure allowed the diffusion of B to the Ti surface and forming $TiB_2$ compounds at the interface. The formed $TiB_2$ can act as a excellent diffusion barrier against Cu-Ti interdiffusion up to $800^{\circ}C$. Also, the resistivity was decreased to $2.3\mu$$\Omega$-cm after annealing at $800^{\circ}C$. In addition, the presence of Ti underlayer promoted the growth Cu(l11)-oriented grains and allowed for normal growth of Cu(B) film. This is in contrast with abnormal growth of randomly oriented Cu grains occurring in Cu(B)/$SiO_2$ upon annealing. The Cu(B)/Ti/$SiO_2$ structure can be implemented as an advanced metallization because it exhibits the low resistivity, high thermal stability and excellent diffusion barrier property.

Keywords

References

  1. S. P. Muraka, Solid State Technol., 39, (1996) 83 https://doi.org/10.1016/0038-1101(95)00093-9
  2. S. P. Jeng. R. H. Hanemann and M. C. Chang, Mater. Res. Soc. Symp. Proc., 337 25 (1994) https://doi.org/10.1557/PROC-337-25
  3. N. Awaya and Y. Arita 1992 J. Electron. Mater., 21, 959 https://doi.org/10.1007/BF02684203
  4. A. Jain, T. Kodas, R. Jairath and M.J. Hampden-Smith, J. Vac. Sci. Technol. B, 11, 2107 (1993) https://doi.org/10.1116/1.586550
  5. J. Lin and M. Chen Jpn. J. Appl. Phys, 1, 38, 4863 (1999) https://doi.org/10.1143/JJAP.38.4863
  6. S. P. Muraka and S. Hymes, Crit. Rev, Solid State Mater. Sci, 20, 87 (1995) https://doi.org/10.1080/10408439508243732
  7. R. Liu, C. S. Pai and E. Martinez, Solid State Electron., 43, 1003 (1999) https://doi.org/10.1016/S0038-1101(99)00015-5
  8. X. W. Lin and D. Pramanlk, Solid State Technol., 41, 63 (1998)
  9. W. A. Lanford, P. J. Ding, W. Wang, S. Hymes and S. P. Murarka, Mater. Chem. Phys., 41, 192 (1995) https://doi.org/10.1016/0254-0584(95)01513-2
  10. P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, Appl. Phys. Lett., 64, 2897 (1994) https://doi.org/10.1063/1.111408
  11. W. A. Lanford, P. J. Ding, W. Wang, S. Hymes and S. P. Murarka, Thin Solid Films, 262, 234 (1995) https://doi.org/10.1016/0040-6090(95)05837-0
  12. C. S. Choi, G. C. Xing, G. A. Ruggles and C M. Osburn, J. Appl. Phys., 69, 7853 (1991) https://doi.org/10.1063/1.347518
  13. S. L. Zhang, J. M. E. Harper and F. M. D'heurle, Journal of Electronic Materials, 30, L1 (2001)
  14. K. Barmak, G. A. Lucadamo, C. Cabral, Jr., C. Lavoie and J. M. E. Harper, J. Appl. Phys., 87, 2204 (2000) https://doi.org/10.1063/1.372162