• Title/Summary/Keyword: $CuOH^+$

Search Result 1,046, Processing Time 0.033 seconds

Adsorption of Cu(II) from Aqueous Solutions Using Pinus densiflora Wood (Pinus densiflora 목질을 이용한 수용액 중의 Cu(II) 흡착)

  • Park, Se-Keun;Kim, Ha-Na;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • Milled Korean pine (Pinus densiflora) wood was used to evaluate its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled woods were pretreated with 1N NaOH, 1N $NHO_3$, and distilled water, respectively, to examine the effect of pretreatment. Within the tested pH range in this study between 3 and 6, copper adsorption efficiency of NaOH-treated wood(96~99%) was superior than $NHO_3$-treated wood(19~31%) and distilled water-treated wood(18~35%). Adsorption behavior of copper onto both raw and $NHO_3$-treated woods was mainly attributed to interaction with carboxylic acid group. For NaOH-treated wood, carboxylate ion produced by hydrolysis was a major functional group responsible for Cu sorption. NaOH treatment of wood changed the ester and carboxylic acid groups into carboxylate group, whereas $NHO_3$ treatment did not affect the production of functional groups which could bind copper. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto NaOH-treated wood. A batch isotherm test using NaOH-treated wood showed that equilibrium sorption data were better represented by the Langmuir model than the Freundlich model.

Evaluation of Aluminum and Copper Biosorption in Two-Metal System using Algal Biosorbent

  • Lee, Hak-Sung;Volesky, Bohumil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassun fluitans pretreated with NaOH is capable of taking up more than $10\%$ $(q_{max}$ : 3.85 mmol/g for Al and 1.48 mmol/g for Cu) of its dry weight in the Al and Cu at pH of 4.5. However, the maximum Al and Cu uptakes calculated from Langmuir isotherm were 1.58 mmol/g for Al and 1.35 mmol/g for Cu at pH 3.5. Equilibrium batch sorption study was performed using two-metal system containing Al and Cu. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal biosorption inhibition due to the influence of a second metal. NaOH-treated S. fluitans contained 2.19 mmol $(43\;wt.\%)$ carboxyl groups per gram of biomass. A modified form of Langmuir, which assumes binding of Cu as $Cu^{2+}$ and Al as $Al(OH)_2^+,$ was used to model the experimental data. This result agrees with the one of mono-valent sorption for Al in single-metal system. The modified Langmuir model gives the following affinity correlated coefficients: 0.196 for Cu and 6.820 for Ah at pH 4.5, and 2.904 for Cu and 3.131 for Al at pH 3.5. The interference of Al in Cu biosorptive uptake was assessed by `cutting' the three dimensional uptake isotherm surfaces at constant second-metal final concentrations. Equimolar final equilibrium concentrations of Cu and Al of 1 mM at pH 4.5 give Cu and hi uptakes reduced by $82.5\%\;and\;5.4\%,$ respectively. However, these values at pH 3.5 were $55\%\;(Cu)\;and\;31\%$ (Al).

  • PDF

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

Cu Filling Characteristics of Trench Vias with Variations of Electrodeposition Parameters (Electrodeposition 변수에 따른 Trench Via의 Cu Filling 특성)

  • Lee, Kwang-Yong;Oh, Teck-Su;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.57-63
    • /
    • 2006
  • For chip-stack package applications, Cu filling characteristics into trench vias of $75{\sim}10\;{\mu}m$ width and 3 mm length were investigated with variations of electroplating current density and current mode. At $1.25mA/cm^{2}$ of DC mode, Cu filling ratio higher than 95% was obtained for trench vias of $75{\sim}35{\mu}m$ width. When electroplated at DC $2.5mA/cm^{2}$, Cu filling ratios became inferior to those processed at DC $1.25mA/cm^{2}$. Pulse current mode exhibited Cu filling characteristics superior to DC current mode.

  • PDF

Electrochemical Performances of the Sn-Cu Alloy Negative Electrode Materials through Simple Chemical Reduction Method

  • Oh, Ji Seon;Kim, Duri;Chae, Seung Ho;Oh, Seungjoo;Yoo, Seong Tae;Kim, Haebeen;Ryu, Ji Heon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.329-334
    • /
    • 2019
  • Sn-Cu alloy powders were prepared via a simple chemical reduction method for the negative electrode materials in lithiumion batteries. The addition of Cu can suppress the growth of Sn particles during synthetic process. Furthermore, the Cu also acts as a matrix phase against the volume change during cycling. With increasing amount of the Cu, a stable $Cu_6Sn_5$ phase formed in the Sn-Cu alloy and its cycle performance greatly enhanced depending on the Cu content. To promote the generation of the $Cu_6Sn_5$ phase, the synthesis temperature is raised to $60-100^{\circ}C$ from the ambient temperature. The Sn-Cu alloy powders prepared at elevated temperatures showed remarkable cycle performances. The Sn-Cu alloy powder obtained at $60^{\circ}C$ exhibited a significantly high volumetric capacity of over 2,000 mAh/cc at the 50th cycle.

Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid (Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합)

  • Hong, Junsung;Lee, Jung-Hoon;Oh, You-Na;Cho, Kwang-Jun;Riu, Doh-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

Effects of Pretreatment of Alkali-degreasing Solution for Cu Seed Layer (약알칼리탈지 용액에서의 구리 Seed 층의 전처리 효과)

  • Lee, Youn-Seoung;Kim, Sung-Soo;Rha, Sa-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2012
  • In order to understand a process of contaminants removal on surface of Cu seed layer (Cu seed/Ti/Si) by sputter deposition, we investigated the changed morphology and states of Cu seed surface after pretreatment in alkali degreasing Metex TS-40A solution according to dipping time. After TS-40A pretreatment, the surface morphology with clearer grains was observed by Field emission scanning electron microscope and the changed surface chemical states and impurities on surface of samples were checked by X-ray photoelectron spectroscopy. Dipping time in TS-40A solution had very little effect on surface of Cu seed layer. After pretreatment, much carbons and little oxygens on surface of Cu seed were eliminated and the decrease of peaks corresponded to O=C and $Cu(OH)_2$ was estimated. However, Si content (=silicate) was detected on sample surface. We think that the silicate impurity forms on Cu seed by chemical reaction of TS-40A solution included silicate component. By pretreatment of alkali degreasing Metex TS-40A solution, it showed an excellent effect in removal of O=C and $Cu(OH)_2$ on Cu seed layer, but the silicate was formed on surface of Cu seed. Therefore, another cleaning process such as acid cleaning is required for removal of this silicate in use of this alkali degreasing.

Mechanisms of Humic Acid-Heavy Metal Complexation (부식산(腐植酸)-중금속(重金屬) 착화합물형성(錯化合物形成) 반응(反應)에 대한 Mechanism)

  • Lee, Jyung-Jae;Chang, Sang-Moon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.114-122
    • /
    • 1995
  • Complexation experiment between humic acid and heavy metal cations was conducted to clear information on heavy metal adsorption by soil organic constituent. The absorbance of UV-visible light of humic acid-metal complexes increased with increasing wavelength, and the order of their absorbance was in the order of Zn->Cd->Cu- saturated humic acid. Carboxyl and phenolic OH groups participated in the complex formation between heavy metal cations and functional groups of humic acid, and the amounts complex was in the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ $\geq$ $Cd^{+{+}}$. The stability constants of humic acid-metal complexes increased with increasing pH, and the order of first stability constants was $Zn^{+{+}}$ > $Cd^{+{+}}$ > $Cu^{+{+}}$, and those of second and overall stability constants were $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. With increasing pH, the average binding numbers betwen heavy metal cations and functional groups of humic acid increased the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. It was postulated that two types of complexations between heavy metal cations and functional groups of humic acid. One was the reactions in which only carboxyl groups participated to form complexes, and the other was those in which both carboxyl and phenolic OH groups simultaneously participated.

  • PDF

Synthesis and Characterization of Delafossite $CuLaO_2$ for Thermoelectric Application

  • Takahashi, Yuhsuke;Matsushita, Hiroaki;Katsui, Akinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1114-1115
    • /
    • 2006
  • The preparation of single-phase $CuLaO_2$ with delafossite-type structure by means of the solid-state reaction method was investigated using X-ray diffraction. The results showed that notwhistanding the fact that there was a trace of metallic copper, nearly single-phase $CuLaO_2$ was obtained by using $La(OH)_3$ as a lanthanum source and by firing the mixed powder with nonstoichiometric composition ratio of $La(OH)_3:Cu_2O=1:1.425$ in a vacuum at 1273 K for 10 h. The measurement of electrical conductivity and Seebeck coefficient showed that $CuLaO_2$ thus obtained was a p-type semiconductor and had a Seebeck coefficient of approximately $70{\mu}V/K$.

  • PDF

Chemical Equilibria of Lanthanide {Ln(III)=Pr, Sm, Gd, Dy}-Macrocyclic Complexes with Auxiliary Ligands in $CH_3OH$(Part III); Study of the Coordination of Nitrogen-or Oxygen-Containing Bases ($CH_3OH$ 용매에서 란탄족 원소 {Ln(III)=Pr, Sm, Gd, Dy}-거대고리 착물과 보조리간드 간의 화학평형(제3보); 두자리 리간드(주게원자:N혹은 O)를 중심으로 고찰)

  • Byun, Jong-Chul;Park, Yu-Chul;Han, Chung-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • Macroacyclic transition metal complexes such as $Cu(H_2L[A]).H_2O$, $Cu(H_2L[B]).H_2O$, CuFe(L[A]($NO_3$).$4H_2O$, CuFe(L[B])($NO_3$).$4H_2O$, [$CuGd(H_2L[A])(NO_3)_2](NO_3).2CH_3OH$, [CuGd($H_2L$[B])($NO_3)_2$]($NO_3).2CH_3OH were prepared from the corresponding hexadentate compartmental ligands, $H_4L[A]$ and $H_4L[B]$, which were obtained by the condensation of 2-hydroxy-3-hydroxymethy1-5-methyIbenzaldehyde(HHNNB) and ethylenediamine or l,3-diaminopropane. Ln-macrocyclic([20]DOTA) complexes,[Ln([20]DOTA)($NO_3)(H_2O)$]($NO_3$)2.$xH_2O${Ln(III)=Pr, Sm, Gd, Dy, which had been synthesized from 2,6-diformyl-p-cresol(DFPC), was placed in methanol for 2 days, and [Ln([20] DOTA)($NO_3)(CH_3OH)]^{2+}$ was formed The equilibrium constants (k) for the substitution of coordinated $CH_3OH$ in the Ln-[20]DOTA complexes by various bidentate auxiliary ligands, $L_a$(=o-phenylenediamine,1,10-phenanthroline, ethylenediamine,oxalicacid, malonic acid, acethylacetone) were determined by spectroscopic method at $25^{\circ}C$ and 0.1M $NaClO_4$.The pKa of auxiliary ligands is in the order of o-phenylenediamine < 1,10-phenanthroline < ethylene-diamine, oxalic acid < malonic acid < acethylacetone. However, the equilibrium constant(K) has shown thetrend of ethyleneiamine < 1,10-phenanthroline < o-phenylenediamine, acethylacetone < malonic acid < oxalic acid.

  • PDF