Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00024

Electrochemical Performances of the Sn-Cu Alloy Negative Electrode Materials through Simple Chemical Reduction Method  

Oh, Ji Seon (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Kim, Duri (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Chae, Seung Ho (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Oh, Seungjoo (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Yoo, Seong Tae (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Kim, Haebeen (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.3, 2019 , pp. 329-334 More about this Journal
Abstract
Sn-Cu alloy powders were prepared via a simple chemical reduction method for the negative electrode materials in lithiumion batteries. The addition of Cu can suppress the growth of Sn particles during synthetic process. Furthermore, the Cu also acts as a matrix phase against the volume change during cycling. With increasing amount of the Cu, a stable $Cu_6Sn_5$ phase formed in the Sn-Cu alloy and its cycle performance greatly enhanced depending on the Cu content. To promote the generation of the $Cu_6Sn_5$ phase, the synthesis temperature is raised to $60-100^{\circ}C$ from the ambient temperature. The Sn-Cu alloy powders prepared at elevated temperatures showed remarkable cycle performances. The Sn-Cu alloy powder obtained at $60^{\circ}C$ exhibited a significantly high volumetric capacity of over 2,000 mAh/cc at the 50th cycle.
Keywords
Sn-Cu alloy; Chemical Reduction; Cycle Performance; Lithium-ion Batteries;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Winter, J.O. Besenhard, Electrochim. Acta, 1999, 45(1-2), 31-50.   DOI
2 C.-M. Park, J.-H. Kim, H. Kim, H,-J, Sohn, Chem. Soc. Rev., 2010, 39(8), 3115-3141.   DOI
3 Z. Yi, Z. Wang, Y. Cheng, L. Wang, Energy Environ. Mater., 2018 1(3), 132-147.   DOI
4 C. Lupu, J.G. Mao, J.W. Rabalais, A.M. Guloy, J.W. Richardson, Inorg. Chem., 2003, 42(12), 3765-3771.   DOI
5 S. Hong, H. Jo, S.-W. Song, J. Electrochem. Sci. Technol., 2015, 6(4), 116-120.   DOI
6 J.H. Ryu, J.W. Kim, Y.-E. Sung, S.M. Oh, Electrochem. Solid-state Lett., 2004, 7(10), A306-A309.   DOI
7 J. Mun, J.H. Ryu, Bull. Korean Chem. Soc., 2016, 37(1), 48-51.   DOI
8 N.-S. Choi, S.-Y. Ha, Y. Lee, J.Y. Jang, M.-H. Jeong, W.C. Shin, M. Ue, J. Electrochem. Sci. Technol., 2015, 6(2), 35-49.   DOI
9 N. Umirov, D.-H. Seo, K.-N. Jung, H.-Y. Kim, S.-S. Kim, J. Electrochem. Sci. Technol., 2019, 10(1), 82-88.   DOI
10 J.S. Kim, N. Umirov, H.-Y. Kim, S.-S. Kim, J. Electrochem. Sci. Technol., 2018, 9(1), 51-59.   DOI
11 K.D. Kepler, J.T. Vaughey. M.M. Thackeray, J. Power Sources, 1999, 81, 383-387.   DOI
12 H.-C. Shin, M. Liu, Adv. Funct. Mater., 2005, 15(4), 582-586.   DOI
13 W. Pu, X. He, J. Ren, C. Wan, C. Jiang, Electrochim. Acta, 2005, 50(20), 4140-4145.   DOI
14 M.G. Kim, S. Sim, J. Cho, Adv. Mater., 2010, 22(45), 5154-5158.   DOI
15 S. Park, J.H. Ryu, S.M. Oh, J. Electrochem. Soc., 2011, 158(5), A498-A503.   DOI
16 X.Y. Fan, F.S. Ke, G.Z. Wei, L. Huang, S.G. Sun, Electrochem. Solid-State Lett., 2008, 11(11), A195-A197.   DOI
17 L. Trahey, J.T. Vaughey, H.H. Kung, M.M. Thackeray, J. Electrochem. Soc., 2009, 156(5), A385-A389.   DOI
18 H.S. Hwang, T. Yoon, J. Jang, J.J. Kim, J.H. Ryu, S.M. Oh, J. Alloys Compd., 2017, 692, 583-588.   DOI
19 Z. Wang, Z. Shan, J. Tian, W. Huang, D. Luo, X. Zhu, S. Meng, J. Mater. Sci., 2017, 52(10), 6020-6033.   DOI
20 L. Su, J. Fu, P. Zhang, L. Wang, Y. Wang, M. Ren, RSC Adv., 2017, 7(45), 28399-28406.   DOI
21 N.-Y Kim, G. Lee, J. Choi, Chem. Eur. J., 2018, 24(71), 19045-19052.   DOI