• 제목/요약/키워드: $CuInS_2$ thin film

검색결과 245건 처리시간 0.024초

Performance Improvement by Controlling Se/metal Ratio and Na2S Post Deposition Treatment in Cu(In,Ga)3Se5 Thin-Film Solar cell

  • Cui, Hui-Ling;Kim, Seung Tae;Chalapathy, R.B.V.;Kim, Ji Hye;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.103-110
    • /
    • 2019
  • Cu(In,Ga)3Se5 (β-CIGS) has a band gap of 1.35 eV, which is an optimum value for high solar-energy conversion efficiency. The effects of Cu and Ga content on the cell performance were investigated previously. However, the effect of Se content on the cell performance is not well understood yet. In this work, β-CIGS films were fabricated by three-stage co-evaporation of elemental sources with various Se fluxes at the third stage instead of at all stages. The average composition of five samples was Cu1.05(In0.59,Ga0.41)3Sey, where the stoichiometric y value is 5.03 and the stoichiometric Se/metal (Se/M) ratio is 1.24. We varied the Se/metal ratio in a range from 1.18 to 1.28. We found that the best efficiency was achieved when the Se/M ratio was 1.24, which is exactly the stoichiometric value where the CIGS grains on the CIGS surface were tightly connected and faceted. With the optimum Se/M ratio, we were able to enhance the cell efficiency of a β-CIGS solar cell from 9.6% to 12.0% by employing a Na2S post deposition treatment. Our results indicate that Na2S post deposition treatment is very effective to enhance the cell efficiency to a level on par with that in α-CIGS cell.

Characteristics of p-Cu2O/n-Si Heterojunction Photodiode made by Rapid Thermal Oxidation

  • Ismail, Raid A.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권1호
    • /
    • pp.51-54
    • /
    • 2009
  • Transparent Cuprous oxide film was deposited by rapid thermal oxidation (RTO) of Cu at $500^{\circ}C$/45s condition on textured single-crystal n-Si substrate to form $Cu_2O$/n-Si heterojunction photodiode. The Hall effect measurements for the $Cu_2O$ films showed a p-type conductivity. The photovoltaic and electrical properties of the junction at room temperature were investigated without any post-deposition annealing. I-V characteristics revealed that the junction has good rectifying properties. The C-V data showed abrupt junction and a built-in potential of 1 V. The photodiode showed good stability and high responsivity in the visible at three regions; 525 nm, 625-700 nm, and 750nm denoted as regions A, B, and C, respectively.

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Computer Simulation of Sensing Current Effects on the Magnetic and Magnetoresistance Properties of a Crossed Spin-Valve Read

  • Lim, S.H;Han, S.H;Shin, K.H;Kim, H.J
    • Journal of Magnetics
    • /
    • 제5권2호
    • /
    • pp.44-49
    • /
    • 2000
  • Computer simulation of sensing current effects on the magnetic and magnetoresistance properties of a crossed spin-valve head is carried out. The spin-valve head has the following layer structure: Ta (8.0 nm)/NiMn (25 nm)/NiFe (2.5 nm)/Cu (3.0 nm)/NiFe (5.5 nm)/Ta (3.0 nm), and it is 1500 nm long and 600 nm wide. Even with a high pinning field of 300 Oe and a high hard-biased field of 50 Oe, the ideal crossed spin-valve structure, which is essential to the symmetry of the output signal and hence high density recording, is not realized mainly due to large interlayer magnetostatic interactions. This problem is solved by applying a suitable magnitude of sensing currents along the length direction generating magnetic fields in the width direction. The ideal spin-valve head is expected to show good symmetry of the output signal. This has not been shown explicitly in the present simulation, however, The reason for this is possibly related to the simple assumption used in this calculation that each magnetic layer consists of a single domain.

  • PDF

RF Sputtering을 이용한 전류 민감성 차단 디바이스에 관한 연구 (The Study on a sensitive current limiting breaking device using RF Sputtering)

  • 이세현;정광희;박두기;김용락;이종철;구경완;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1088-1092
    • /
    • 1995
  • In this paper, we evaluated the sputter-deposited Cr/Cu thin film fuses on $Al_2O_3$ substrates by the adhesive, breaking and repetitive over-current test as a function of temperature on them. Each Cr and Cu was deposited $1700{\pm}300{\AA},\;3700{\pm}300{\AA}$ using RF sputtering unit. The electroplated Cu of $25{\mu}m$ thickness was added in order to make sensitive thin film fuse of the normal current 15[A]. The adhesive strength and the number of repetition were Increasing and then decreasing with the temperature. The maximum adhesive strength of over $9kgf/9mm^2$ was obtained at $400^{\circ}C$. In the breaking test, the post-arc time characteristic was better than any other factor.

  • PDF

CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석 (Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method)

  • 박상우;장수영;장준성;김진혁
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

성장온도에 따른 Cu(In1Ga)Se2박막 태양전지의 광전특성 분석 (Photovoltaic Properties of Cu(In1Ga)Se2Thin film Solar Cells Depending on Growth Temperature)

  • 김석기;이정철;강기환;윤경훈;송진수;박이준;한상옥
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.102-107
    • /
    • 2003
  • This study puts focus on the optimization of growth temperature of CIGS absorber layer which affects severely the performance of solar cells. The CIGS absorber layers were prepared by three-stage co-evaporation of metal elements in the order of In-Ga-Se. The effect of the growth temperature of 1st stage was found not to be so important, and 350$^{\circ}C$ to be the lowest optimum temperature. In the case of growth temperature at 2nd/3rd stage, the optimum temperature was revealed to be 550$^{\circ}C$. The XRD results of CIGS films showed a strong (112) preferred orientation and the Raman spectra of CIGS films showed only the Al mode peak at 173cm$\^$-1/. Scanning electron microscopy results revealed very small grains at 2nd/3rd stage growth temperature of 480$^{\circ}C$. At higher temperatures, the grain size increased together with a reduction in the number of the voids. The optimization of experimental parameters above mentioned, through the repeated fabrication and characterization of unit layers and devices, led to the highest conversion efficiency of 15.4% from CIGS-based thin film solar cell with a structure of Al/ZnO/CdS/CIGS/Mo/glass.

Investigation of contact resistance between metal electrodes and amorphous gallium indium zinc oxide (a-GIZO) thin-film transistors

  • Kim, Woong-Sun;Moon, Yeon-Keon;Lee, Sih;Kang, Byung-Woo;Kwon, Tae-Seok;Kim, Kyung-Taek;Park, Jong-Wan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.546-549
    • /
    • 2009
  • In this paper, we investigated the effects of different source/drain (S/D) electrode materials in thin film transistors (TFTs) based on indium-gallium-zinc oxide (IGZO) semiconductor. A transfer length and effective resistances between S/D electrodes and amorphous IGZO thin-film transistors were examined. Intrinsic TFT parameters were extracted by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low drain voltage. The TFTs fabricated with Cu S/D electrodes showed the lowest contact resistance and transfer length indicating good ohmic characteristics, and good transfer characteristics with a field-effect mobility (${\mu}_{FE}$) of 10.0 $cm^2$/Vs.

  • PDF

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

스파터링 조건이 FeMn계 top 스핀 밸브의 exchange bias 및 자기적 특성에 미치는 영향 (Effect of sputtering conditions on the exchange bias and giant magnetoresistance in Si/Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta spin valves)

  • 김광윤;신경호;한석희;임상호;김희중;장성호;강탁
    • 한국자기학회지
    • /
    • 제10권2호
    • /
    • pp.67-73
    • /
    • 2000
  • 6개의 타겟을 가진 직류 마그네트론 방식을 이용하여 스파터링 전력 및 압력을 변화시켜 Si/Ta(50 $\AA$)NiFe(60 $\AA$)/CoFe(20 $\AA$)/Cu(26 $\AA$)/CoFe(40 $\AA$)/FeMn(150 $\AA$)Ta(50 $\AA$) 스핀 밸브 박막을 제조하여 교환자기이방성 및 자기적 특성을 조사하였다. FeMn 층의 증착시 스파터링 전력을 증가시킴으로써 교환이방성을 증가시킬 수 있었으며, X-선 회절 실험결과 스파터링 전력 증가에 따른 교환이방성의 증가는 FeMn (111)면의 우선성장 발달에 기인하는 것으로 판단되었다. 강자성상을 사이에 두고 있는 Cu의 스파터링 압력을 1-5 mTorr 증가시 교환이방성이 급격히 감소하며, 자기저항비 및 자장민감도도 감소하였다. Si/Ta/NiFe/CoFe/Cu(t), 30 W/CoFe, 100 W/FeMn, 100 W/Ta 스핀 밸브에서 Cu 두께를 22-38 $\AA$까지 변화시켜 자기저항비를 조사한 결과 Cu의 두께가 22 $\AA$일 때 자기저항비 6.5%까지 얻을 수 있었으며, Cu 두께를 감소시켜 교환이방성을 증가시킬 수 있었다. 이와 같은 Cu 두께 감소에 따른 교환이방성의 증가는 FM-AFM 스핀-스핀 상호작용에 의하여 설명하였다.

  • PDF