• Title/Summary/Keyword: $CoSi_2$ Thin Film

Search Result 184, Processing Time 0.035 seconds

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Oxidation of BON and Si-DLC Thin Films deposited by Plasma Enhanced CVD method (Plasma Enhanced CVD 법으로 증착한 BON박막과 Si-DLC 박막의 산화)

  • Kim, Chan-U;Hong, Ri-Seok;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.73-73
    • /
    • 2007
  • Amorphous BON and Si-DLC thin films were synthesized by the RF plasma enhanced CVD method, and their oxidation behavior was studied up to $500^{\circ}C$ in air. The oxidation of both films was accompanied by evaporation of volatile species. The oxidation of BON film was preceded by nitrogen escape from the film, and oxygen penetration into the film. The oxidation of Si-DLC film was preceded by carbon escape probably as CO or $CO_2$from the film, and oxygen penetration into the film. The inwardly transported oxygen simply stayed in the oxidized BON and Si-DLC thin films.

  • PDF

Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping (Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

Co-deposition of Si Particles During Electrodeposition of Fe in Sulfate Solution (황산철 도금액 중 Si 입자의 공석 특성)

  • Moon Sung-Mo;Lee Sang-Yeal;Lee Kyu-Hwan;Chang Do-Yon
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.319-325
    • /
    • 2004
  • Fe thin films containing Si particles were prepared on metallic substrates by electrodeposition method in sulfate solutions and the content of codeposited Si particles in the films was investigated as a function of applied current density, the content of Si particels in the solution, solution pH, solution temperature and concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film was not dependent on the applied current density, solution pH and solution temperature, while it was dependent on the content of Si particles in the solution and the concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film increased with increasing content of Si particles in the solution but reached a maximum value of about 6 wt% when the content of Si particles in the solution exceeds 100 g/l. On the other hand, the content of Si codeposited in the film increased up to about 17 wt% with decreasing concentration of $FeSO_4$$7H_2$O in the solution. These results would be applied to the fabrication of very thin Fe-6.5 wt% Si sheets for electrical applications.

Co-sputtering of Microcrystalline SiGe Thin Films for Optoelectronic Devices

  • Kim, Seon-Jo;Kim, Hyeong-Jun;Kim, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • Recently, Silicon Germanium (SiGe) alloys have been received considerable attention for their great potentials in advanced electronic and optoelectronic devices. Especially, microcrystalline SiGe is a good channel material for thin film transistor due to its advantages such as narrow and variable band gap and process compatibility with Si based integrated circuits. In this work, microcrystalline silicon-germanium films (${\mu}c$-SiGe) were deposited by DC/RF magnetron co-sputtering method using Si and Ge target on Corning glass substrates. The film composition was controlled by changing DC and RF powers applied to each target. The substrate temperatures were changed from $100^{\circ}C$ to $450^{\circ}C$. The microstructure of the thin films was analyzed by x-ray diffraction (XRD) and Raman spectroscopy. The analysis results showed that the crystallinity of the films enhances with increasing Ge mole fraction. Also, crystallization temperature was reduced to $300^{\circ}C$ with $H_2$ dilution. Hall measurements indicated that the electrical properties were improved by Ge alloying.

  • PDF

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

Substrate Effect on the Electrochemical Properties of $LiCoO_2$ Thin-Film Cathode for Li Microbattery (리튬 미소전지용 $LiCoO_2$ 박막양극의 전기화학적 특성에 미치는 기판의 영향)

  • Lee Jong-Ki;Lee Seung-Joo;Baik Hong-Koo;Lee Sung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.157-161
    • /
    • 2000
  • In order to investigate the substrate effect on the electrochemical properties of thin-film electrode, $LiCoO_2$ was deposited onto the alumina, chemically etched-Si and flat-Si substrates. After annealing at $800^{\circ}C$ in $O_2$ for 30min, the film deposited on the alumina consisted of large particles with several cracks, whereas the film deposited on the flat-Si substrate was composed of very small and uniform particles. The films deposited on the flat-Si showed improved electrochemical properties such as peak potential divergence and rate-capability, over those deposited on the alumina and chemically etched-Si substrate, which can be attributed to the differences of the particle size surface morphology, and the electrical resistance of the current collector.

Structural and Electrochemical Properties of Spin Coated LiCoO2 Cathode Thin Film in Lithium Secondary Batteries (스핀코팅법에 의한 리튬 2차전지용 산화물 양전극 LiCoO2 박막의 구조 및 전기화학적 특성에 대한 연구)

  • Gang, Seong-Gu;Yu, Gi-Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.243-246
    • /
    • 2006
  • The LiCoO2 thin films were prepared on the Pt/Ti/SiO2/Si substrate by spin coating using citrate sol. The citrate sol was spin-coated on substrate and dried at 380oC for 15 min. to evaporate the solvents and remove the organic materials. The as-deposited films were annealed at 750oC for 10 min. in air for crystallization. The X-ray diffraction patterns for the film have been indexed hexagonal system with space group R3m. The active area of LiCoO2 films for electrochemical test was about 11cm2. A Li foil and 1M LiClO4 in propylene carbonate(PC) and ethylene carbonate(EC) (1:1)were used as an anode and an electrolyte, respectively. The galvanostatic charge-discharge test was carried out at constant current density ranging from 5 A/cm2 in the voltage window between 4.2 and 3.0 V. The first discharge capacity of the film is 0.35Ah/cm2-m. The cycling behavior of the LiCoO2 film is also reported.

Characterization of channel length and width of p channel poly-Si thin film transistors (P channel poly-Si TFT의 길이와 두께에 관한 특성)

  • Lee, Jeoung-In;Hwang, Sung-Hyun;Jung, Sung-Wook;Jang, Kyung-Soo;Lee, Kwang-Soo;Chung, Ho-Kyoon;Choi, Byoung-Deog;Lee, Ki-Yong;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.87-88
    • /
    • 2006
  • Recently, poly-Si TFT-LCD starts to be mass produced using excimer laser annealing (ELA) poly-Si. The main reason for this is the good quality poly-Si and large area uniformity. We report the influence of channel length and width on poly-Si TFTs performance. Transfer characteristics of p-channel poly-Si thin film transistors fabricated on polycrystalline silicon (poly-Si) thin film transistors (TFTs) with various channel lengths and widths of 2-30 ${\mu}m$ has been investigated. In this paper, we analyzed the data of p-type TFTs. We studied threshold voltage ($V_{TH}$), on/off current ratio ($I_{ON}/I_{OFF}$), saturation current ($I_{DSAT}$), and transconductance ($g_m$) of p-channel poly-Si thin film transistors with various channel lengths and widths.

  • PDF

The Effect of Additional Elements X on Magnetic Properties of CoCrTa/Cr-X Thin Film (CoCrTa/Cr-X 자성박막의 자기적성질에 미치는 첨가원소 X의 영향)

  • 김준학;박정용;남인탁;홍양기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.314-319
    • /
    • 1993
  • The Effects of additional element X (X = Si, Mo, Cu, Gd) on magnetic properties and microstructure of Co-1Zat%Cr-Zat%Ta/Cr-X magnetic thin film were investigated. The thickness changes of Cr-X underlayer and CoCrTa magnetic layer were in the range of $1000~2000\AA$ and $200~800\AA$. respectively. Substrate temperatures were controlled from $100^{\circ}C$ to $200^{\circ}C$. Increase of coercivity by about 100~200 Oe was observed in CoCrTa/Cr-X thin films compared to those without additional X element. Cu was the most effective additional element for increasing coercivity. CoCrTa/Cr-Cu thin film shows relatively high coercivity in $1500\AA$ underlayer thickness and $600\AA$ magnetic layer thickness.

  • PDF