• Title/Summary/Keyword: $Calder{\acute{o}}n$-Zygmund operator

Search Result 6, Processing Time 0.026 seconds

COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

  • Wang, Hongbin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.713-732
    • /
    • 2017
  • Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent.

ENDPOINT ESTIMATES FOR MAXIMAL COMMUTATORS IN NON-HOMOGENEOUS SPACES

  • Hu, Guoen;Meng, Yan;Yang, Dachun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.809-822
    • /
    • 2007
  • Certain weak type endpoint estimates are established for maximal commutators generated by $Calder\acute{o}n-Zygmund$ operators and $Osc_{exp}L^{\gamma}({\mu})$ functions for ${\gamma}{\ge}1$ under the condition that the underlying measure only satisfies some growth condition, where the kernels of $Calder\acute{o}n-Zygmund$ operators only satisfy the standard size condition and some $H\ddot{o}rmander$ type regularity condition, and $Osc_{exp}L^{\gamma}({\mu})$ are the spaces of Orlicz type satisfying that $Osc_{exp}L^{\gamma}({\mu})$ = RBMO(${\mu}$) if ${\gamma}$ = 1 and $Osc_{exp}L^{\gamma}({\mu}){\subset}RBMO({\mu})$ if ${\gamma}$ > 1.

SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES WITH NON-DOUBLING MEASURES

  • Shi, Yanlong;Tao, Xiangxing
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.907-925
    • /
    • 2012
  • In this paper the boundedness for a large class of multi-sublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calder$\acute{o}$n-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.

DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS

  • Wang, Wenhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.365-384
    • /
    • 2021
  • Let A be an expansive dilation on ℝn, and p(·) : ℝn → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. Let Hp(·)A (ℝn) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional ��-type Calderón-Zygmund operators from Hp(·)A (ℝn) to Lp(·) (ℝn) or from Hp(·)A (ℝn) to itself. In addition, the author also obtains the duality between Hp(·)A (ℝn) and the anisotropic Campanato spaces with variable exponents.