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ENDPOINT ESTIMATES FOR MAXIMAL COMMUTATORS
IN NON-HOMOGENEOUS SPACES

GUOEN Hu, YAN MENG, AND DACHUN YANG

ABSTRACT. Certain weak type endpoint estimates are established for
maximal commutators generated by Calderén-Zygmund operators and
Oscexprr (1) functions for r > 1 under the condition that the under-
lying measure only satisfies some growth condition, where the kernels
of Calder6n-Zgymund operators only satisfy the standard size condition
and some Hérmander type regularity condition, and Oscexp 1.~ (1) are the
spaces of Orlicz type satisfying that Oscexp (1) = RBMO(u) if r = 1
and Osceyp (1) C RBMO(p) if r > 1.

1. Introduction

It is well known that the doubling condition of the underlying measure is a
key assumption in the analysis on spaces of homogeneous type. We recall that
u is said to satisfy the doubling condition if there is a constant C > 0 such
that u(B(z, 2r)) < Cu(B(z, 7)) for all z € R? and r > 0, where B(z, r) =
{y €R¢: |y — x| < r}. However, during the last several years, many classical
results have been proved still valid if the underlying measure p is a positive
Radon measure on R?, which only satisfies the following growth condition that
there exist constants Cy > 0 and n € (0,d] such that for all z € R? and r > 0,

(1.1) u(B(z, r)) < Cor™;

see [5, 6,7, 10, 11, 12]. The Euclidean space R? equipped with a Radon measure
that only satisfies (1.1) is called a non-homogeneous space since 4 may not be
doubling. The motivation for developing the analysis on non-homogeneous
spaces and some examples of non-doubling measures can be found in [14]. We
only point out that the analysis on non-homogeneous spaces played an essential
role in solving the long-standing Painlevé’s problem by Tolsa in [13].
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The purpose of this paper is to establish some weak type endpoint esti-
mates for the maximal commutators associated to Calderén-Zygmund opera-
tors, whose kernels satisfy the standard size condition and some weaker regu-
larity condition, with Oscexpr-(t) functions, where r > 1. Before stating our
results, we first recall some necessary notation and definitions.

Throughout this paper, by a cube Q C R?, we mean a closed cube whose
sides are parallel to the axes and centered at some point of supp(u), and we
denote its side length by (Q) and its center by zg. Let o and 3 be positive
constants such that @ > 1 and 8 > o™. For a cube Q, we say that Q is (a, 8)-
doubling if u(a@) < Bu(Q), where o) denotes the cube concentric with @ and
having side length al(Q). In what follows, for definiteness, if o and @ are not
specified, by a doubling cube we mean a (2, 2¢71)-doubling cube. Especially,
for any given cube Q, we denote by Q the smallest doubling cube in the family
{2*Q}x>0. For two cubes @ C Q,, set

Ngi.ap 2kQ1
KQ17Q2 1 + Z 2kQ1

where Ng, g, is the first positive integer k such that [(2Q1) > 1(Q2); see [9]
for some basic properties of Kq, q,.

Definition. For r > 1, a locally integrable function f is said to belong to the
space OSCexp 1~ (1t) if there is a constant C; > 0 such that

(i) for any Q,

£ =ma0],,

=inf{)\>0: ;(%Q—)/Qexp lf—fzﬂ> du 32}301,

(ii) for any two doubling cubes Q1 C Q2, |mq, (f) —mq, ()| < C1Kq,, s,

~ i 2] ~ — _1 -
where mg(f) is the mean value of f on Q, namely, mg(f) = o)) fQ f(z) dp(x)

The minimal constant C; satisfying (i) and (ii) is defined to be the Oscexp L~ (1)
norm of f and denoted by || fllosc,., . (u)-

The space Oscexpr-{) is an analogy of the classical OSCexp L~ (Rd) space
which was introduced by Pérez and Trujillo-Gonzélez in [8]. Obviously, for
any r2 > 11 > 1, OsCexprm2 (1) C OSCexprm () € RBMO(u). Moreover,
from the John-Nirenberg inequality established by Tolsa in [9], it follows that
OsCexpr () is just the space RBMO(u) of Tolsa in [9].

Let K € LL (R* x R\ {(, y) : © = y}) and there exists a constant C' > 0
such that for all z, y € R? with z # v,

(1.2) |K(z, y)| < Clz —y|™",
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and for all y, i’ € RY,

(13) / (1K (z, v) - Kz, )
le—y|>2|y—y'| ,
+|K(y’ J)) - K(:’J ) .73)|} dﬂ(z) < C.
For any € > 0, define the truncated operators T, by

(1.4) T.(f)(x) = / Kz, 4)f(y) du(y),

lz—y|>e
and the maximal Calderén-Zygmund operator T* by

(1) T (f)(z) = sup [T.(£)(@)] .

It is well known that if the operators T, are bounded on L?(u) uniformly for
€ > 0, then there is an operator T which is the weak limit as ¢ — 0 of some
subsequence of the uniformly bounded operators T,. The operator T is also
bounded on L?(u) and satisfies that for f € L2(u) with suppf # R?, and
almost all z € R%\ supp f,

1)) = [ K i) duty)

For m € N and by, by,..., b, € RBMO(z), define the multilinear commutator
T; by

T f (@) = [bms [bra—1, -+, [b1, T -] (F) (=),
where b = (b, b, ..., br) and [by, T is defined by
(1.6) (b1, TI(f)z) = b1 (2)T(f)(z) = T(ba f) ().
For the case of m = 1, we denote T; simply by Ty. When the kernel K
satisfies the size condition (1.2) and the standard regularity condition: there

exist two constants a € (0, 1] and C' > 0 such that for all z, y, ¢’ € R? with
[z —yl>2ly~y|and z #y,

/o

1) K y) - K o)+ K o)~ K( 0] < o

Tolsa [9] proved that if the operators T, are bounded on L2() uniformly for e >
0, then T} is bounded on LP(y) for any p € (1, o). In [1], we generalized this
result of Tolsa and proved that if K satisfies (1.2) and (1.7) and the operators
T, are bounded on L%(u) uniformly for € > 0, then for any m € N, T; is also
bounded on LP(1) with p € (1, oc), and satisfies a weak type endpoint estimate,
namely, there exists a constant C' > 0 such that for all A > 0 and all bounded
functions f with compact support,

p({z e’ s @)1 >0}
[T @)l
< C%/r(H [16illosc.y, i (,4)) /Rd <P1/r< 3 )du(x),

=1
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where C' > 0 is a constant, 1/r = Y 7", 1/r; and ¢,(t) = tlog”(2 + t) for
o, t>0.

We now define the maximal commutator associated with the operator T;.
For m € N and b, bs,...,bn € RBMO(u), the maximal commutator Tg is
defined by

(18) TP =sup|T, o)
/, e H[b WK (2, 1)f () du(y)|.

Repeating the proof of Lemma 4.1 in [4], we can prove that if K satisfies (1.2)
and the following Hérmander-type condition

= sup
>0

(19) wp S [ (1K@, v) -~ K, v)]
vy ERY r2y—y'| 17 2lr<|z—y|<2t+1

+K(y, 7) = K(¢/, )|} du(a) < oo,

and if the operators T, are bounded on L?(u) uniformly on € > 0, then for
b; € RBMO(u) with i = 1, 2,...,m, the operator T:is bounded on LP{u) for
any p € (1, o). It was also proved in [3] that if K satisfies (1.2) and (1.7),
and if the operators T, are bounded on L?(u) uniformly for € > 0, then for
m = 1, the maximal commutator T} satisfies the weak type endpoint estimate,
namely, there exists a constant C' > 0 such that for all A > 0 and all bounded
functions f with compact support,

p({ze® (@I >A})
< Corye (Inllowap ) |, 170 (L) ).

In this paper, we will further prove that if K satisfies (1.2) and (1.9), then for
any m € N, the maximal commutator Tg enjoys the same endpoint estimate.
Our result can be stated as follows.

Theorem 1.1. Let m € N, r; > 1 and b; € OsCexp 17 (1) fori =1, 2,.

and Ty be the same as in (1.8) with the kernel K satisfying (1.2) and (1 9) f
the operators T. are bounded on L?(u) uniformly for € > 0, then there ecists
a constant C > 0 such that for all X > 0 and all bounded functions f with
compact support,

u({z R T (N(@)] > 2})
< C<P1/r(H 16:lloscory i (u)) /Rd <P1/r(|f—(>\x)—|>d#($)-

Throughout this paper, for any index p € [1, 00|, we denote by p’ its conju-
gate index, namely, 1/p+ 1/p’ = 1. For f ~ g, we mean that the ratio f/g is

(1.10)
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bounded and bounded away from zero by constants independent of the relevant
variables in f and g¢. Similar is f < g. Constants with subscripts, such as Cp,
are positive constants independent of the main parameters involved but whose
values may not be the same at each occurrence.

2. Proof of Theorem 1.1

We begin with a generalization of the Holder inequality. For r > 0, a cube
Q and an appropriate function f, define

_ 1 |f ()] 1f(=)]
||fHL(10gL)r,Q—1nf{)\>0.m o A log (2_|_ ) ) <1}

and

Ifllspiri = int {3>0: s [ exp () duta) <2},
Then for any cube Q,

N(;Q) /Q ‘ Hbi(w)f(x)‘ du(z) < CH [billexp i, @I f Lo £y1/7, @

where 7; > 1 and 1/r = 7%, 1/r;; see Lemma 3.2 in [8] and the related
references there.

Lemma 2.1. Let m € N, r; > 1 and b; € OsCexprmi (1) fori =1,2,...,m
and Mz be defined by

r>0 "

(22)  My(f)(x) = sup — / |<H|b 2) — bi) || F ()| du(y).

Then there exists a constant C > 0 such that for all A > 0 and all bounded
functions f with compact support,

p({zeR?: My(f)(z ) > A})

i X
< Cpuye (I 1o ) [, o1 (L2 ) o)
i=1

where r and ¢y, are the same as in Theorem 1.1.

For the special case m = 1, Lemma 2.1 was proved in [3]. For m > 2, Lemma
2.1 can be proved in a similar way. We omit the details for brevity.

Proof of Theorem 1.1. By the homogeneity, we may assume that for i =
1,...,m, “bi”Oscexp .~ (w) = 1. We carry out the argument by induction on m.

Step I. m = 1. In this case, we denote Tg simply by Ty. For each
fixed bounded function f with compact support and each A > 0 (with A >
251 £l 2y /el i [lall < 005 mote that if ||l < oo and A < 27| £ 11y /sl
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then the inequality (1.10) is trivial), applying the Calderén-Zygmund decom-
position to f at level A (see [9]), we can obtain a sequence of cubes {Q;}jen
with bounded overlaps (that is, 3~ xq, (z) < 1) such that
(8) 5 < 7pgy Jo, 1f (@) du();
) u(2$Q,) an] |f(z)| du(z) < 57 for any n > 2;

(b

() |f(@)] €A pra.e. on R\ U;Q;

(d) for each fixed 7, let R; be the smallest (6, 6™"!)-doubling cube of the
form 6%Q;, k > 1. Set wj = XQ,/ >k XQ.- Then there is a function 6;
with supp#; C R; and satisfying

[ 0@ du) = [ @@ dute), 10lz=0uk) S [ 17@)]duto)
R¢ Q; Qj

and ¥3,16;(2)] $ A
Set 9(2) = £(@)Xre\u,0, (@) + 5, 05(z) and

h(z) = f(2) - g(z) = > {f@w;(@) - 6;(2)} = D _ hy(a).
J i
Obviously,
Ty (£)(z) < Ty (9)(2) + Ty (h) (z)-
Note that ||g|lzec(uy S A, and ||gllza(y S | f]lL2(uy- The L?(u)-boundedness of
Ty tells us that

(2.3) p({zeR: Ty (g)(z) > A}) SA2

SAT 1/R |f(@)] du().
Rd
Taking into account the fact that

(24 §0:2Q) $37 [ 17(@)lduta),

we see that the proof of Theorem 1.1 can be reduced to proving that

. x
23 wlfrerN\u20: 0@ > S [ oe(L) aute)
To this end, by the vanishing moment conditions of h; for j € N, we can write

Tb* (h)(x)XRd\ szQj (x)

-/ { K. pto) — b0

-K(z, x0,) [b(:c) -mg, (b)] }hj (v) duly)

= sup
e>0

XRd\ Uj2Qj (.’L‘)
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SE:Wm~m@@w
3

X sup fR , [E@, y) — Ko, 20,)1h; (1) du(®)| Xga u;2Q; (@)

+ (3 [ - mg ()] hy) (@)
3
= E(z) + F(a),
where T is defined by (1.5), and K, for € > 0 is defined by

Kﬁ(zv Z/) = K("Ev y)X{(m-—y(>e}(I1 ?/)

Theorem 1.1 in [2] tells us that if T, are bounded on L?(;) uniformly on e > 0,

and K satisfies (1.2) and (1.3), then T* is bounded from L'{u) to weak L'(j).
Thus,

p({ze RY: |F(x)| > /\}) < At Z/Rd ’b(m) - m@vj(b), [f(z)w; (x)] dp(x)

Y [ @) =g 0)] 0,0 )
_Gem

Note that R; is also (2, 27*!)-doubling and R; = R;. A trivial computation
gives us that K 3R, < 1. Thus,
rAhg

HZ /\“12 1051 Loo () {/R |5(z) — mp, (b)| du(z)

+u(R;) Iij (b) —mg, (b)l}
S AT N5 il By)

X7 [ 5@ duto)
Ra
On the other hand, by the generalization of Holder inequality (2.1), we obtain

GSA” 12#(2@ Hlleqoszyim, @b = mg (O)llexorr, @

y—1 : t [f@), 1 lf( )
SA Zﬂ(mj)gg{Hu@Qj)/Qj ; log*/" (2 ( )du(ﬁv)}

< /Rd lf(x)| 1/r(2+Lf_(>iCl|) du(z)
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It remains to estimate E(z). Note that for y € R; and z € R?\ 2R;,
T —xg,| ~ |z —y|. A straightforward computation indicates
Q; )

sup | |Ke(z, y) — Kc(z, ©q,)| |h;i(y)] du(y)

< [ 1K v) - K@ 0, 1@l du)
+SUP/ {|K($7 VX {z—y>dn{lz—aq,I<e} (T, V)
e>0 JRd
K (2, 20, X(la-pi<ein(ls—za, 1>} (@ ¥) } 1hs ()] dia(y)
S [ 1K@ 0) ~ Kz, 20, 1hy(0)l duy) + M(ky)(2),

where M is the Hardy-Littlewood maximal operator defined by

Mh(z) = sup o | 1h@)]dutw).

Therefore,

z) S Z ’b(:c) -mg; (b)‘ /Rd |K (z, y) — K (2, zq,)| Ih;(¥)| du(y)xrer2r, (2)
+ M3 ) (@) + M (3 Jo — ma, ®)]I1s]) <)

+ 3 [pla) — mg; (0] T (1) @)xar 20, (=)

+y }b(x) ~mg. (5) sup/ |Ke(z, ©,)h; (V)| du(v)xar,\20, (%)
J
An application of Lemma 2.1 gives us that

p({ze R? : Ey(z) > S /Rd gol/r(w) du(x)

+/Rd Qol/r(w) du(z)
=I+1J.

t [ o () )

Recall that }°; [0;(z)| < X It then follows that

J<)\IZ||9||Lw(u)N ) <A /!f )] d(z),

Obviously,
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and so
p({z €R: Ea(z) > A}) S /Rd wl/T(@) du(z).

Since the Hardy-Littlewood maximal operator M is bounded from L!(u) to
weak L!(u), similar to the estimate for F(z), it follows that

p({z €RY: By(m) > A}) S /chl,(m ”)du(x).

To estimate E4(x), observing that 1 < k < Nag, 2r;, K~

35, 2k+1Q NKQ

R ] N

1, we can easily obtain that
p({z € R?: E4(z) > A})

G k=1 Y2"TIQ;\2%Q;

b(z) — mg (b)]
></wﬂr—{lf( Yw; ()] +16; (W)} du(y)du(z)

32 N(2k+2QJ)K
120, g,

X
——

|f ()| du(y) + ||0j||L°°(u)N(Rj)}

S [ ),

<

> =

and similarly,
p({z € R*: Es(z) > A}) N}\Z/ v)| du(y)

For E;(z), another application of the generalized Holder inequality (2.1) yields

lb(z) —mg, ()| |K (2, 1) - K (@, 7q,)| du(z)
R¢\2R;

Z\ m i, () = mg )] [ e, [0~ Ko 70)] o
+3 / lb(x) - mzml(b)’ K (z, y) — K(2, 20,)| du(e)
k= 2k+1Rj\2kR_7’ J

S 2 Kg, i, / K (z, v) - K(z, 2q,)| du(z)
k=

F+1R;\2FR;
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+ Z 7 (2k+2Rj) Hb ~ My, (b)

1 exp L7(p), 21 R;

X ”{K(9 y) - K(‘a l.Qj)} X2k+1R;\2%R; (')HL(logL)l/’r‘(M)’2k+1Rj :

Let
-1 _
M= [0 (27R,)] 7 (k / |K(, y) - K(z, 2,)] dua) +27*).
2k+1R;\2k R,

By (1.2), we then have that for y € R;,
1 / |K(x7 y)—K(.’E, sz)|

25+1R;\2% R,

H(2F+2R;) Ak
K -K ,
> logl/r(2+ I (‘Tv y) (IE, xQ])I) dﬂ(.’ﬂ)
Ak

< 1 / |K(z, y) — K(z, zq,)|
™ w(2¥2R;) Jorerg\orR, Ak

1 1
x log!/" (2 + + du(z
8 ( /\k|:v—y|" )\klx_ijln) M( )
- K .
<k K v) K@ zg)l o
n(25+2R;) 2k+1R,\2% R, Ak
S L

Thus,
I{KC,y) - K, @)} X2’°+le\2’“Rj(')HL(logL)l/’"(u),2k+1Rj S Ak
This via (1.9) tells us that
[ o)~ mg )] [k ) - Kz, 0] dutw)
RY\2R;

o0

- T, TQ, T —k
& ; (k/2k+1Rj\2kRj IK(L )~ K, Q])' dulz) +2 )
< 1.
Therefore,
1
u({z eR?: Ei(z) > Ab S A ;/Rj /Rd\mj lb(x) -G (b)|
x |K(z, y) — K(z, zq,)| |h;(y)| du(z) du(y)

S §Z/R 1y (v)] ()

<5 [ rwlduty)
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which along with the estimates for Ey(z), Es(z), E4(z) and Es(z) gives the
desired estimate for E(z). Combining the estimates for E(z) and F(z) yields
the estimate (2.5) and then completes the proof of m = 1.

Step IL. m > 2. In this case, we need more notation. For 0 < ¢ < m, we de-
note by C7" the family of all finite subsets o = {o(1),...,0(¢)} of {1, 2, ..., m}
with ¢ different elements. For ¢ € C/™, the complementary sequence ¢’ is given
byo' ={1,2,...,m}\o. Ifc =0, weset o/ = {1,...,m}. For any i—tupler =
(r1,72,...,7i), we write 1/r5 = 1/rp1y + -+ + 1/ro and 1/ror = 1/7 — 1/r,,
where 1/r = 1/ri + -+ 1/rpy. Let b = (by, by...,bm) be a finite family of
locally integrable functions. For o € C", we set by = (bs(1), - - - »bo(s)) and the
product by = by(1) - - by(;y. For o = 0, we define b, = 1. With this notation,
we write

||ba||oscexpyg (n) = ||bo(1) ||Oscexp Loy () 77T ”ba(i) llosc Loy (1)

exp

Forie€ {l,...,m} and 0 € C™, we set

[b(y) — b(2)]o = [bo()(¥) — bo1)(2)] - [bos) (¥) = bo(i) (2)]

and

ma® = bw)] = [mg(bom) = by ®)] -+ [mz o) — bty )]

(2

where () is any cube in R? and y, z € R?. For any o € C™, define

K2

3

sup | Ko(@, 9) [] [bots)(@) — bty ()] £) duty).

e>0 JRd

T: (f)(a) =

j=1

When o = {1,...,m}, we denote T simply by T:.

Now let m > 2 be an integer. We assume that (1.10) holds for any 1 < i <
m — 1 and any subset ¢ € CT™. For any fixed f and A > 29| f|| L1y /[ ], let
Qj, R;, 85, w;, g, h and h; be the same as in Step I. By an argument similar
to the estimates for (2.3) and (2.4), it suffices to verify that

2 u({oeriiu2gs r@> ) s [ e (B duto)

With the aid of the formula that for y, z € R?,

m

1 [mab) )] = 32 3 bio) = ba)l,e ) — )]

o
i=1 1=0 a'ECim
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and the vanishing moment conditions satisfied by h; for j € N, it is easy to see

that
Tfh(z) = sup /Rd {Ke(x, Y) ] [bi(z) —

~K(z, 7q,) H [bi(2) — mg, (80)] } hs(v) du(v)
< (b:)
>0 G =1

< [ Ko, ) - Kulo, 50, 1h5(0)| duty)
+T*(Zﬁ b= g, 03] 1) @)
Sy (o= mg o], )@

=1 oc€C™

L@ T RE + S Y T3 (h) ).

i=1 ceC®

Similar to the estimate for E(z) in Step I, we have

p({remiuzg,: 1iw@ > 2}) 5 [ e (L) auo)

On the other hand, the same argument as that for F(z) in Step I leads to that

p({zeriiu2: 0@ > ) s [ o (‘f (= )') du(a).
R
For each fixed ¢ with 1 < ¢ < m — 1, our induction hypothesis now states that

W ({x €R%: Tf Hpy () > A})

S [ v (|[p@) - mgy 0],
Lo (S -],

=M, + No.

o))
EET) dute)

Applying the inequality

©1/r,, (bot1 - 1) S p1/r(to) +expty”™ + - +expt;” @, to, t1,...,t >0
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(see Lemma 2.2 in [8]), and the fact (a) in the Calderén-Zygmund decomposi-
tion, we then deduce that

Ma Sz Z >/]Rd 901/7‘(“50“05%"19 LTe (“),X—QJ(—Z)\L(:ZZH) d'u‘(x)
J

(|bo(l)(w) ~mg, (bo(n))]

” ba(l) ” Oscexp e (1)

< /Rd %)—'logl/’" (2 + IfE\—w)l) du(z) + Ej:u(%?j)

< /Rd L)icﬂlogl/T(2 + I—f—(;—)l) du(z).

To estimate Ny, let 7; = A7%|0;], and A C N be a finite index set. The convexity
of 1/, , says that

xe;(@) " dufz)

o1, ( ZA [p(a) ~mq, o] ,ng\ﬂi)’)
: ]Ze;\ (Z;JA T ) P1/ror ( l [b(x) —mg, (b)] J XR; () ; 7”1>
S S (Xn) 2 e, (I1b(a) —mg )], Ixr, )
S logl/rd/ (2 + Zn) er%/ra, (I [b(:L') —mg, (b)]a‘XR,- (@)
leA  jea
< Yoo, (1@ - mg O], bxr, ()
JjEA

This in turn leads to that

No 07 S e [ ouse, (| [ble) — g )

¥

<At Z 1051 oo () 1e(R;)

) du(a)

o

SA [ 1@ dute).

Therefore, for 1 < i <m —~1 and o0 € C™, we have

p({rert: e > ) < [ o (B2 auto)

which completes the proof of (2.6), and hence the proof of Theorem 1.1. 3
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