• Title/Summary/Keyword: $C_2$-Fragment

Search Result 552, Processing Time 0.03 seconds

Mass Spectrometry of Dammarane Triterpenoids (Dammarane계(係) Triterpenoid의 질량분광분석(質量分光分析))

  • Han, Byung-Hoon;Kim, Jae-Hoon;Chi, Hyung-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.10 no.2
    • /
    • pp.55-59
    • /
    • 1979
  • Mass spectra of the dammarane triterpenes having open side chain and $C_{20}-C_{25}-epoxy$ side chain were measured. Principal fragment ions were assigned and plausible mechanisms for the formation of the fragment ions were proposed. In general, the triter-penoids of $C_{20}-C_{25}-epoxy$ side chain. produce $h_{1}-species$ fragment ions by the deletion of side chain at $C_{20}-C_{22}$ bond and open side chain triterpenoids produce $h_{2}$ species fragmentions whose mass numbers are higher by two mass unit than those of $h_{1}$ species. The mass number of h species fragment ions will serve as the diagnostic tool for the elucidation of side chain structure of tetracyclic triterpenoids.

  • PDF

Structural and Functional relationship of the recombinant catalytic subunit of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.215-215
    • /
    • 2002
  • Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major funational domains such as dihydrplipoamide adetyltransferase(E2)-binding domain, regulatory subunit of PDP(PDP)r-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase(rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPc binds to the inner lipoyl domain (L2) of E2 of ppyruvate dehydrogenase complex (PDC) in the presence of Ca+2, not under EGTA. PDPc was limited-proteolysed by typsin, chymotypsin, Arg-C, and elastase at pH 7.0 and 30C and N-terminal analysis of the fragments was done. Chymotrypsin, trypsin, and elastase made two major fragments: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx.10 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Expression, Purification and Functional and structural relationship of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.236-236
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase componant of the pyruvate dehydrogenase complex (PDC). PDP consists of a Mg$\^$+2/ -dependent and Ca$\^$+2)-stimulated catalytic subunit (PDPc) of Mr 52,600 and a FAD-containing regulatory subunit (PDPr) of Mr 95.600. Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major functional domains such as dihydrolipoamide acetyltransferase(E$_2$)-binding domain, regulatory subunit of PDP(PDPr)-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase (rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPm binds to the inner lipoyl domain (L$_2$) of E$_2$ of pyruvate dehydrogenase complex (PDC) in the presence of Ca$\^$+2/, not under EGTA. PDPc was limited-proteolysed by trypsin, chymotrypsin, Arg-C, and elastase at pH7.0 and 30$^{\circ}C$ and N-terminal analysis of the fragment was done. Chymotrypsin, trypsin, and elastase made two major framents: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx. 0 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35 kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Cloning, Nucleotide Sequence and Expression of Gene Coding for Poly-3-hydroxybutyric Acid (PHB) Synthase of Rhodobacter sphaeroides 2.4.1

  • Kim, Ji-Hoe;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 1997
  • A gene, $phbC_{2.4.1}$ encoding poly-3-hydroxybutyric acid (PHB) synthase of Rhodobacter sphaeroides 2.4.1 was cloned by employing heterologous expression in Escherichia coli. R. sphaeroides chromosomal DNA partially digested with MboI was cloned in pUC19 followed by mobilization into E. coli harbouring $phbA,B_{AC}$ in pRK415, which code for ${\beta}$-ketothiolase and acetoacetyl CoA reductase of Alcaligenes eutrophus, respectively. Two E. coli clones carrying R. sphaeroides chromosomal fragment of $phbC_{2.4.1}$ in pUC19 were selected from ca. 10,000 colonies. The PHB-producing colonies had an opaque white appearance due to the intracellular accumulation of PHB. The structure of PHB produced by the recombinant E. coli as well as from R. sphaeroides 2.4.1 was confirmed by [$H^{+}$]-nuclear magnetic resonance (NMR) spectroscopy. Restriction analysis of the two pUC19 clones revealed that one insert DNA fragment is contained as a part of the other cloned fragment. An open reading frame of 601 amino acids of $phbC_{2.4.1}$ with approximate M.W. of 66 kDa was found from nucleotide sequence determination of the 2.8-kb SaiI-PstI restriction endonuclease fragment which had been narrowed down to support PHB synthesis through heterologous expression in the E. coli harbouring $phbA,B_{AC}$. The promoter (s) of the $phbC_{2.4.1}$ were localized within a 340-bp DNA region upstream of the $phbC_{2.4.1}$ start codon according to heterologous expression analysis.

  • PDF

Effect of Chongmyung-Tang Prescription Combination on the Production of Amyloid β protein and β-site amyloid precursor protein-cleaving enzyme Activity in vitro (In vitro에서 β-site amyloid precursor protein-cleaving enzyme 활성과 amyloid β protein 생산에 대한 총명탕가미방(聰明湯加味方)의 효과)

  • Lim, Jung-Hwa;Jung, In-Chul;Lim, Jong-Soon;Kim, Seung-Hyung;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.2
    • /
    • pp.191-200
    • /
    • 2010
  • Objectives : This experiment was designed to investigate the effect of Chongmyung-Tang Prescription Combination(CmTP-$C_{1-10}$) extract on the production of amyloid $\beta$ protein and $\beta$-site amyloid precursor protein-cleaving enzyme(BACE) activity. Methods : The effect of CmTP-$C_{1-10}$ extract on expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by lipopolysacchride(LPS) and amyloid $\beta$ protein fragment(A$\beta$ fragment) were investigated. The effect of CmTP-$C_{1-10}$ extract on production of amyloid $\beta$ protein(A$\beta$) in BV2 microglia cell line treated by LPS and A$\beta$ fragment were investigated. The effect of CmTP-$C_{1-10}$ extract on BACE activity were investigated. Results : 1. CmTP-$C_9$ extract the most significantly suppressed the expression of APP mRNA, BACE2 mRNA in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 2. CmTP-$C_9$ extract significantly suppressed the production of A$\beta$ in BV2 microglia cell line treated by LPS and A$\beta$ fragment. 3. CmTP-$C_9$ extract the most significantly inhibited BACE activity. Conclusions : These results suggest that CmTP-$C_9$ may be effective for the prevention and treatment of Alzheimer's Disease. Investigation into clinical use of CmTP-$C_9$ for Alzheimer's Disease is suggested for future research.

Multiplex Polymerase Chain Reaction Assay for Simultaneous Detection of Candida albicans and Candida dublinensis

  • Lim, Young-Hee;Lee, Do-Hyun
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.146-150
    • /
    • 2002
  • A multiplex polymerase chain reaction (PCR) assay was developed for the identification of two Candida species-albicans and dubliniensis. Three sets of primers were selected from different genomic sequences to specifically amplify a 516 bp fragment within the tops gene, specific for several species of the genus Candida (CCL primers); a 239 bp fragment within the $\alpha$INT1 gene, specific for Candida albicans (CAL primers); and a 175 bp fragment within the ALSD1 gene, specific for Candida dubliniensis (CDL primers). Using the primers in conjunction (multiplex PCR), we were able to detect both C. albicans and C. dubliniensis and to differentiate between them. The detection limit of the PCR assay was approximately 10 cells per milliliter of saline. Thus, this multiplex PCR assay can be applied for differentiation of C. albicans and C. dubliniensis from clinical specimens.

Isolation and Characterization of a Wound or UV Induced cDNA Fragment from Pleurotus sajor-caju (상처 및 자외선 자극에 반응하는 여름느타리 cDNA 단편의 분리 및 그 발현 특성)

  • Park, Soo-Chul;Jung, Uk-Jin;Jeong, Mi-Jeong;Kim, Bum-Gi;Yoo, Young-Bok;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.26 no.3 s.86
    • /
    • pp.314-320
    • /
    • 1998
  • A 0.4 kb cDNA fragment was isolated from mRNA of UV or mechanical wound damaged Pleurotus sajor-caju by the differential display method. Expression of the gene corresponding to this cDNA fragment was highly induced by mechanical wound damage or UV treatment. This gene showed only basal level expression in mycelia, stipe, and cap under normal growth conditions. Sequencing analysis showed that this cDNA fragment contains partial open reading frame. Homology search using genbank database revealed that although this gene do not have homology with already reported wound induced genes, it has a significant sequence homology in defined region with the cdc2-related protein kinase gene which is known to be involved in negative regulation of meiotic maturation in Xenopus oocytes.

  • PDF

Detection of Mutated DNA Fragment by the Heteroduplex Analysis at the Temperature Gradient Gel (온도 기울기(temperature gradient) 젤에서 Heteroduplex Analysis 기법을 이용한 돌연변이 DNA의 검출)

  • 조용석;구미자;박귀근;박영서;강종백
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.83-88
    • /
    • 1998
  • To detect the mutation in a given sequence, there are variety of methods developed by use of the gel electrophoresis. One of the methods, TGGE (Temperature Gradient Gel Electrophoresis), is a popular technique because it can detect mutations in DNA fragment with ease and at low cost. This study used 200 bp BamHI-digested DNA fragment containing the human $\varepsilon$-globin promoter which was mutated[$\varepsilon$ F1*(-141), GATA- I*(-163), and GATA-1* & $\varepsilon$F1]. This BamHI-digested DNA fragment was directly used to detect the mutated DNA fragment on 50% denaturant gel with temperature gradient of 45$^{\circ}C$ through $53^{\circ}C$. In agreement with the theoretical result of MELTSCAN program (Brossette and Wallet, 1994) the mobilities of mutated DNA fragments were shown to be nearly distinguished on the temperature gradient gel. In contrast to the above result the heteroduplex analysis under the temperature gradient condition was shown to detect the mutated DNA fragments through the heteroduplex formation between strands of mutated DNA and wild-type DNA.

  • PDF

Molecular Cloning of ATPase $\alpha$-Subunit Gene from Mitochondria of Korean Ginseng (Panu ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A. Meyer) ATPase $\alpha$-subunit 유전자의 Cloning)

  • Park, Ui-Sun;Choi, Kwan-Sam;Kim, Kab-Sig;Kim, Nam-Won;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.56-61
    • /
    • 1995
  • Molecular cloning and restriction mapping on ATPase $\alpha$-subunit gene (atpA) were carried out to obtain genomic information concerned with the gene structure and organization in Korean ginseng mitochondria. Two different clones containing the homologous sequence of atpA gene were selected from SalI and PstI libraries of mitochondrial DNA (mtDNA) of Korean ginseng. The sizes of mtDNA fragments inserted in SalI and PstI clones were 3.4 kb and 13 kb, respectively. Southern blot analysis with [$^{32}P$] labelled Oenothera atPA gene probe showed that atpA gene sequence was located in 2.0 kb XkaI fragment in PstI clone and in 1.7 kb XbaI fragment in SalI clone. A partial sequening ascertained that the SalI clone included about 1.2 kb fragment from SalI restriction site to C-terminal sequence of this gene but about 0.3 kb N-terminal sequence of open reading frame was abscent. The PstI fragment was enough large to cover the full sequence of atpA gene. The same restriction pattern of the overlapped region suggests that both clones include the same fragment of atiA locus. Data of Southern blot analysis and partial nucleotide sequencing suggested that mtDNA of Korean ginseng has a single copy of atpA gene. Key words ATPase a-subunit, mitochondrial DNA, Panax ginseng.

  • PDF