• Title/Summary/Keyword: $C_1-cellulase$

Search Result 355, Processing Time 0.035 seconds

Confirmation of Non-Siderophore Antifugal Substance and Cellulase from Bacillus lichemiformis Kll Containing Antagonistic Ability and Plant Growth Promoting Activity (생물방제능과 식물성장촉진능을 동시에 가지는 Bacillus licheniformis K11의 non-siderophore 항진균 물질 및 cellulase의 생산조건 확인)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.983-989
    • /
    • 2007
  • Bacillus lichemiformis Kll, a plant growth promoting rhizobacterium was reported as a producer of auxin, siderophore, as well as antifungal cellulase under some culture conditions. In vitro test, B. licheniformis Kll represented excellent antagonistic ability against Fusarium oxyspoum (KACC 40037), and showed broad spectrum against other phytopathogenic fungi. B. licheniformis Kll had cellulolytic activity toward not only carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as fungal cell wall cellulose, filter paper (Whatman No. 1), and Avicel. In addition, we confirmed antifungal substance production by butanol-extract methods. The strain produced optimally the antifungal substance when it was cultivated at pH 9.0, 30${\circ}$C for 4 days on nutrient medium. The biological control mechanisms of B. lichemiformis Kll were caused by antifungal substance, cellulase and siderophore against phytopathogenic fungi.

Isolation and Characterization of Bacillus subtilis CH-10 Secreting Cellulase from Cattle Manure (우분으로부터 Bacillus subtilis CH-10의 분리 및 균주가 분비하는 Cellulase의 특성에 관한 연구)

  • Kim, Tae-Il;Han, Jung-Dae;Jeon, Byoung-Soo;Ha, Sang-Woo;Yang, Chang-Bum;Kim, Min-Kyun
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 1999
  • A bacterium producing the extracellular cellulase was isolated from cattle feces and screened as cellulase activity was excellent upon congo red straining method and activity measurements. Isolate was identified as Bacillus subtilis CH-10 on the basis of morphological and biochemical properties as well as cellular fatty acids composition. The enzyme which the isolate secretes had the optimum initial pH and temperature for its induction was 7.5 and 50${\circ}C$, respectively. The maximum CMCase activity in crude enzyme solution was observed at pH 7.5 and 75${\circ}C$ and was stable for pH 7.5 to 9.0 to maintain 70% activity. When the isolate was cultured in CMC media at 37${\circ}C$ for 24 hrs, CMCase and FPase activity was 1.13 U/㎖and 0.16U/㎖, respectively whereas Avicelase and ${\beta}$-glucosidase activity was not detected. When crude supernatant was used for zymogram, three major bands, cel 1, cel 2 and cel 3, were detected approximately 39, 41 and 57 KDa, respectively on CMC-SDS-PAGE.

  • PDF

Studies on the Cellulase of Penicillium sp. Isolated from Soils - (II) Culture Conditions of Penicillium sp. C13-13 Strain - (토양에서 분리한 Penicillium sp.가 생산하는 Cellulase에 관한 연구 - (II) Penicillium sp. C13-13 주(株)의 배양조건 검토 -)

  • Kim, Yong-Bae;Yi, Pyung-Kuk;Choi, Seung-Ho
    • The Korean Journal of Mycology
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 1974
  • 1. Penicillium sp. C 13-13 strain was obtained with the treatment of mutagenic agents(N.T.G.) and by single spore isolation method from the Penicillium sp. C8-14 strain, which was reported in the previous paper. 2. The above strain had a few spores and to obtain seed culture, it was cultured at $30^{\circ}C$ and initial pH $4.5{\sim}5.0$, with air rate 6l/min., and agitation 600 rpm for 48 hours in 10% wheat bran medium in 20l- Jar fermenter. When the broth that had above 70ml of mycelium was inoculated into wheat bran medium and incubated at $29{\sim}33^{\circ}C$ for 72 hrs, the cellulase activity of the koji was higher. 3. Adding calcium chloride and magnecium sulfate to the wheat bran medium to 1.5% and 0.015% respectively, the cellulase activity of the koji was higher than that of the control.

  • PDF

Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass (Schizophyllum commune에 의한 Cellulase 생산 및 섬유소계 바이오매스의 당화를 위한 효소적 특성)

  • Kim, Hyun-Jung;Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Lee, Dong-Heub;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.547-560
    • /
    • 2010
  • The optimum culture condition of Schizophyllum commune for the cellulase production and its enzymatic characteristics for saccharification of cellulosic biomass were analyzed. S. commune secrets ${\beta}$-1,4-xylosidase (BXL) and cellulases, including endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), and ${\beta}$-glucosidase (BGL). The optimum reaction temperature for all cellulases was $50^{\circ}C$ and the thermostable range was $30{\sim}40^{\circ}C$C. The optimum reaction pH for all cellulases was 5.5 in a range of temperature from $0^{\circ}C$ to $55^{\circ}C$. The best nutritions for the cellulase production of S. commune among tested nutrients were 2% cellulose for the carbon source and corn steep liquor or peptone/yeast extract for the nitrogen source without vitamins. The environmental culture condition for the cellulase production was 5.5~6.0 for pH at $25{\sim}30^{\circ}C$. The enzyme activities of EG, BGL, CBH, and BXL were 3670.5, 631.9, 398.5, and 15.2 U/$m{\ell}$, respectively, after concentration forty times from the culture broth of S. commune which was grown at the optimized culture condition. Alternative filter paper unit assay showed 11 FPU/$m{\ell}$ enzyme activity. The saccharification tests using cellulase of S. commune showed the low saccharification rate on tested hardwoods but a high value of 50.5% on cellulose, respectively. The saccharification rate (50.5%) of cellulose by cellulase produced in this work is higher than 45.7% in the commercial enzyme (Celluclast 1.5L, 30 FPU/g, glucan).

Studies on Some Properties of Cellulase Isolated from Pirieularia oryzae (Piricularia oryzae로부터 추출한 cellulase의 몇가지 성질에 대한 연구)

  • 전상윤
    • Korean Journal of Microbiology
    • /
    • v.17 no.2
    • /
    • pp.58-64
    • /
    • 1979
  • Studies on some properties of cellulase isolated from Piricularia oryzae. Crude cellulases were prepared from dried rice plant powder (Tong-il, Pal-dal) culture of P. oryzae(N-2, C-8, T-2). The best yield of enzyme was obtained from the medium using Tong-il rice plant powder for P. oryzae cav. N-2 and 2%-sucrose concentration in preculture media. Two units of the enzyme were incubated at $60^{\circ}C$ for 1 hour with 1.0ml, 0.6% Na-CMC. The optimum temperature for the enzyme activity was at $60^{\circ}C$ and the optimum pH was at pH4.0. When Na-CMC was used as substrate the $K_m$ values of crude enzyme were calculated to be $1.05{\times}10^{-4}\;mM\;and\;V_{max}$ was 2.8 mmole/hour. A 10-fold partial purification was achieved by $(NH_4)_2SO_4$ precipitation followed by column chromatography on DEAE Sephadex A-25.

  • PDF

Antioxidant Effect of Oil Containing Cellulase-Treated Red Ginseng. (효소 처리 홍삼을 함유한 오일의 항산화 효과)

  • Kim, Hyun-Jeong;Yang, Seun-Ah;Im, Nam-Kyung;Jhee, Kwang-Hwan;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.323-328
    • /
    • 2008
  • In this study we evaluated the method to develop red ginseng oil containing high content of phytochemicals by enzymes treatment. To select the optimum extraction process of red ginseng with oils, the antioxidant activities of red ginseng using various enzymes were measured. Red ginseng after 0.5% cellulase treatment for 1 hr at $50^{\circ}C$ had higher antioxidant activity than the other conditions. We found that red ginseng/soybean oil extracted for 15 days at $40^{\circ}C$ after 0.5% cellulase treatment increased DPPH radical scavenger activity and decreased the TBA and POV values. However, red ginseng/olive oil had little functional activities compare to the red ginseng/soybean 0il. We also analyzed vitamin A and E by HPLC and found that vitamin E was increased by 0.5% cellulase treatment in the oil. This is the first report that red ginseng oil extracted by enzyme treatment has various beneficial effects.

Studies on Cellulase -Part. 2. The Physiological and Morphological Properties of the Cellulase producing Strains Ku-3371 and Ku-4383- (Cellulase에 관(關)한 연구(硏究) -제 2 보(第 2 報) Cellulase 생성균(生成菌) Ku-3371, Ko-4383 균주(菌株)의 균학적(菌學的) 성질(性質)-)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.119-122
    • /
    • 1969
  • In the previous paper, two strains of cellulase producing microorganism were isolated from night soil samples using shaking culture. This report deals with the physiological and morphological tests carried out according to the methods of Toyama and Chung. 1. Two strains, Ku-3371 and Ku-4383 which should the best growth in Czapek.s liquid medium, were identified as Trichoderma viride. 2. These strains grew the best at about $30^{\circ}C$ and the optimum pH values of growth in Czapek's liquid medium was 4.0. 3. These mould strains utilized monosaccharide as its carbon source and can utilized sodium glutamate, peptone and nitrate form nitrogen but other inorganic nitrogen compoumd are unable to use as its nitrogen source.

  • PDF

Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression

  • Yang, Fan;Gong, Yanfen;Liu, Gang;Zhao, Shengming;Wang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1101-1107
    • /
    • 2015
  • The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

Properties of Cellulase Immobilized on Chitosan Beads (키토산 비드에 고정화된 셀룰라아제의 특성)

  • Lee, Sang Heon;Ha, Yongil;Kim, Bo Young;Kim, Beom Soo
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.239-243
    • /
    • 2014
  • Recently, there is a growing interest in efficient biomass pretreatment and saccharification processes to produce biofuels and biochemicals from renewable non-food biomass resources. In this study, glucose was produced from cellulose by immobilizing cellulase enzyme on chitosan beads which was reported to have high pH and temperature stability. The immobilized amounts of cellulase on chitosan beads linearly increased with increasing the concentrations of cellulase solution. The glucose production increased to 7.2 g/L from 1% carboxymethyl cellulose (CMC) substrate when immobilized at 20% cellulase solution. The maximum specific activity was 0.37 unit/mg protein when immobilized at 8% cellulase solution. At pH 7 and $37^{\circ}C$, the optimum reaction composition was 0.5 g beads/L from 1% CMC substrate. At this condition, the conversion to glucose completed at ca. 20 min.

Enhanced Hydrolysis of Cellulose by Combination of Humicola insolens Cellulase with Immobilized Glucose Isomerase

  • Hur, Sung-Ho;Lee, Ho-Jae;Lee, Jae-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.117-120
    • /
    • 1996
  • To enhance cellulose hydrolysis f Humicola insolens cellulase (HIC) was empolyed with immobilized glucose isomerase(IGI). Optimun pH and temperature for HIC were 6.5 and 55$^{\circ}C$, respectively, whereas those for IGI were 7.0 and 60$^{\circ}C$, respectively. Optimun loading size of IGI was 200mg(130 untis) with 15units of HIC. Reaction conditions were determined to be as follows: 55$^{\circ}C$,pH 6.5, HIC 15 units and IGI 130 units. After 24h hydrolysis, more than 65% of avicel was converted to glucose and fructose; in contrast, the conversion ratio of control was 40%.

  • PDF