Browse > Article
http://dx.doi.org/10.5658/WOOD.2010.38.6.547

Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass  

Kim, Hyun-Jung (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Kim, Yoon-Hee (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Cho, Moon-Jung (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Shin, Keum (Institute of Forest Science, Kookmin University)
Lee, Dong-Heub (Korea Forest Research Institute, Division of Wood Processing)
Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
Publication Information
Journal of the Korean Wood Science and Technology / v.38, no.6, 2010 , pp. 547-560 More about this Journal
Abstract
The optimum culture condition of Schizophyllum commune for the cellulase production and its enzymatic characteristics for saccharification of cellulosic biomass were analyzed. S. commune secrets ${\beta}$-1,4-xylosidase (BXL) and cellulases, including endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), and ${\beta}$-glucosidase (BGL). The optimum reaction temperature for all cellulases was $50^{\circ}C$ and the thermostable range was $30{\sim}40^{\circ}C$C. The optimum reaction pH for all cellulases was 5.5 in a range of temperature from $0^{\circ}C$ to $55^{\circ}C$. The best nutritions for the cellulase production of S. commune among tested nutrients were 2% cellulose for the carbon source and corn steep liquor or peptone/yeast extract for the nitrogen source without vitamins. The environmental culture condition for the cellulase production was 5.5~6.0 for pH at $25{\sim}30^{\circ}C$. The enzyme activities of EG, BGL, CBH, and BXL were 3670.5, 631.9, 398.5, and 15.2 U/$m{\ell}$, respectively, after concentration forty times from the culture broth of S. commune which was grown at the optimized culture condition. Alternative filter paper unit assay showed 11 FPU/$m{\ell}$ enzyme activity. The saccharification tests using cellulase of S. commune showed the low saccharification rate on tested hardwoods but a high value of 50.5% on cellulose, respectively. The saccharification rate (50.5%) of cellulose by cellulase produced in this work is higher than 45.7% in the commercial enzyme (Celluclast 1.5L, 30 FPU/g, glucan).
Keywords
Schizophyllum commune; cellulase; endo-${\beta}$-1,4-glucanase; cellobiohydrolase; ${\beta}$-glucosidase; cellulose;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Yang, B. and C. E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts and Biorefining 2(1): 26-40.   DOI
2 Yoon, J. J. and Y. K. Kim 2005. Degradation of crystalline cellulose by the brown-rot basidio-mycete Fomitopsis palustris. The Journal of Microbiology 43(6): 487-492.   과학기술학회마을
3 Yoon, J. J, C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. Journal of Microbiology and Biotechnology 17(5): 800-805.   과학기술학회마을
4 Yu, Z. and H. Zhang 2004. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae, Bioresource Technology 90(1): 95-100.
5 Zhang, Y-H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose Noncompleted cellulase systems. Biotechnology and Bioengineering 88(7): 797-824.   DOI   ScienceOn
6 Mach, R. L., B. Seiboth, A. Myasnikov, R. Gonzalez, J. Strauss, and A. M. Harkki. 1995. The Bgl1 gene of QM9414 encodes an extracellular, cellulose inducible beta-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology 16(4): 687-697.   DOI   ScienceOn
7 Mats, G. and Z. Guido. 2007. Pretreatment of lignocellulosic materals for efficient bioethanol production. Advances in biochemical engineering/biotechnology 108: 41-65.   DOI   ScienceOn
8 Morikawa, Y., T. Ohashi, O. Mantani, and H. Okada. 1995. Cellulase induction by lactose in Trichoderrna reesei PC-3-7. Applied Biochemistry and Biotechnology 44(1-2): 106-111.
9 Novozymes. 2002. Product sheet (Ceiluclast 1.5 LFG), 2001-08524-03.pdf, Novozymes A/S, Denmark.
10 Selig, M., N. Weiss, and Y. Ji. 2008. Enzymatic sac-charification of lignocellulosic biomass. National Renewable Energy Laboratory Technical Report NREL/TP-510-42629.
11 Sheehan, J. 2001. The road to bioethanol. A strategic perspective of the US department of energy's national ethanol program. In: Himmel M. E, Baker JO., Saffler JN (eds) Glycosyl hydrolases for biomass conversion, American chemical society, Washington DC. p. 2-25.
12 Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Siuiter, D. Templeton, and D. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass, National Renewable Energy laboratory Technical Report NREL/TP-510-42618.
13 Somogy, M. 1952. Notes on sugar determination. Journal of Biological Chemistry 195: 19-23.
14 Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology 83(1): 1-11.   DOI   ScienceOn
15 Juhasz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulascs produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40(11): 3519-3525.   DOI   ScienceOn
16 Xie, Y, D. Phelps, C. H. Lee, M. Sedlak, N. Ho, and N. H. L. Wang. 2005. Comparison of two adsorbents for sugar recovery from biomass hydrolysate. Industrial and Engineering Chemistry Research 44(17): 6816-6823.   DOI   ScienceOn
17 Joo, A. R., M. Jeya, K. M. Lee, W. I. Sim, J. S. Kim, I. W. Kim, Y. S. Kim, D. K Oh, P. Gunasekaran, and J. K. Lee. 2009. Purification and characterization of a ${\beta}$-1,4-glucosidase from a newly isolated strain of Fomilopsis pinicola. Applied Microbiology and Biotechnology 83(2): 285-294.   DOI
18 Jorgensen. H. and L. Olsson. 2006. Production of cellulases by Penicillium brasiliaiinm IBT 20888 - Effect of substrate on hydrolytic performance, Enzyme and Microbial Technology 38(3-4): 381-390.   DOI   ScienceOn
19 Kamm, B. and M. Kamm. 2004. Principles of biorefineries. Applied Microbiology and Biotechnology 64(2): 137-145.   DOI
20 Kim, H J., M. J. Cho, Y. H. Kim, K. Shin, Y. K. Kim T. J. Kim and Y. S. Kim 2010. Effect of carbon source on the hydrolytic ability of the enzyme from Fomitopsis pinicola for lignocellulosic biomass, Journal of the Korean Wood Science and Technology 38(5): 429-438.   DOI   ScienceOn
21 Krusa, M, G. Henriksson, G. Johansson, T. Reitberger, and H. Lennholm. 2005. Oxidative cellulose degradation by cellobiose dehydrogenase from Phanerochaete chrysosporium : A model compound study, Holzforschung, 59: 263-26.   DOI   ScienceOn
22 Kubicek, C. P., G. Muhlbauer, M. Krotz, E. John, and E. M. Kubicek. 1988. Properties of a conidial bound cellulase enzyme system from Trichoderma reesei. Journal of General Microbiology 134: 1215-1222.
23 Fang, X., S. Yano, H. Inoue, and S. Sawayama. 2008. Lactose enhances cellulase production by the filamentous fungus Acremoniitm cellulolyticus. Journal of Bioscience and Bioengineering 106(2): 115-120.   DOI   ScienceOn
24 Ladisch, M. and J. Svartzkopf. 1991. Ethanol production and the cost of fermentable sugars from biomass. Bioresource Technology 36(1): 83-95.   DOI   ScienceOn
25 Blanchette, R. A., C. D. Behrcndt. D. Williams. S. Iverson, M. Akhtar, and S. A. Enebak. 1998. A new approach to effective biopulping: treating logs with Phlebiopsis giganteo. 7th International Conference on Biotechology in the Pulp and Paper Industry, Vol. A, A51-A54.
26 Bradford, M. M. 1967. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analatical Biochemistry 72: 248-254.
27 Fritscher, C., R. Messner, and C. P. Kubicek 1990. Cellobiose metabolism and cellobiohydrlase I biosynthesis by Trichoderma reesei. Experimental Mycology 14: 405-415.   DOI
28 Ghose, T. K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268.   DOI
29 Goldstein, I. and J. Easter. 1992 An improved process for converting cellulose to ethanol. Tappi Journal 20: 165-140.
30 Ivo, V, N. Sanchi, T. Petya, and L. Vesk. 2009. Use of enzymes in hydrolysis of maize stalks. BioResources 4(1): 285-291.
31 Jeya, M., S. Thiagarajan, J. K. Lee, and P. Gunasekaran 2009. Identification of new GH 10 and GH 11 xylanase genes from Aspergillus versicolor MKU3 genome-walking PCR. Biotechnology and Bioprocess Engineering 14(1): 13-19.   과학기술학회마을   DOI   ScienceOn
32 윤정준, 이영민, 최두열, 김영균, 김영숙, 2007. 볏짚 분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리 정제 및 효소 특성. 목재공학 35(6): 159-165.
33 Joo, A. R, K. M. Lee, W. I. Sim, M. Jeya, M. R. Hong, Y. S. Kim, D. K. Oh, and J. K. Lee. 2009. Thiamine increases ${\beta}$-glucosidase production in the newly-isolated strain of Fomilopsis pinicola, Letters in Applied Microbiology 49: 196-203.   DOI   ScienceOn
34 김윤희, 조문정, 신금, 김태종, 김남훈, 김영숙. 2010. Fomitopsis palustris의 균체 외 효소에 의한 볏짚의 효소당화에 관한 연구. 목재공학 38(3): 262-273.