• 제목/요약/키워드: $CO_2$ cycling

검색결과 163건 처리시간 0.024초

연료 개질기용 고성능 수성가스 전환반응 촉매 개발 (Development of High Performance WGS Catalyst for Fuel Processor Applications)

  • 이윤주;류종우;김대현;최은형;노원석;이상득;문동주
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상 (Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect)

  • 범지우;김은미;정상문
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.861-867
    • /
    • 2017
  • 니켈 함량이 높은 리튬이차전지용 NCA 양극소재의 용량 및 수명특성을 향상시키기 위하여 붕소와 코발트를 상업용 $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA)에 도핑하여 리튬이차전지의 양극소재로 사용하였다. 상업용 NCA 양극소재는 약 $5{\mu}m$$12{\mu}m$ 크기의 2차 입자들이 혼합되어 있고 붕소와 코발트 도핑후 입자크기는 조금 감소되었다. 붕소와 코발트를 도핑한 NCA-B와 NCA-Co의 초기 방전용량은 각각 214 mAh/g과 200 mAh/g으로 도핑하지 않은 NCA에 비해 높게 나타났으며, 특히 NCA-Co는 20번째의 방전용량이 157 mAh/g으로 가장 우수한 방전용량특성을 나타내었다. 이는 코발트를 도핑함으로써 c축 방향으로의 결정이 성장되어 리튬이온의 확산이 용이하기 때문이다.

리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석 (Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries)

  • 선호정;이재호;정현영;석동찬;정용호;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.160-171
    • /
    • 2013
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

Aflatoxin과 그 생성(生成)에 관련되는 주요인(主要因) (Aflatoxin: Factors Affecting Aflatoxin Production)

  • 박건영
    • 한국식품영양과학회지
    • /
    • 제13권1호
    • /
    • pp.117-126
    • /
    • 1984
  • Aflatoxins are toxic and carcinogenic secondary metabolites which are produced by trains of A. flavus and A. parasiticus during their growth on foods and feedstuffs. Aflatoxins are a group of closely related heterocyclic compounds of which $B_1$, $B_2$, and $G_2$ are the major members. Aflatoxins are synthesized via a polyketide pathway in which the general steps are acetate, an-thraquinones, xanthone and aflatoxins. Aflatoxin formation is favored by high moisture or high $a_w$(0.95${\sim}$0.99). The limiting $a_w$ for aflatoxin production on agricultural commodities is 0.83. Optimum temperature for aflatoxin production by the molds is $25{\sim}30^{\circ}C$ and the incubation time for the maximum production of the toxin is 7${\sim}$15 days. The limiting temperatures for aflatoxin production are ${\leq}7.5^{\circ}C\;and\;\geq40^{\circ}C$. Cycling temperatures may or may not stimulate aflatoxin production depending on the amplitude of cycling, substrate and strains of molds. Aflatoxin pro-ducing molds are aerobic organisms and thus have a requirement for oxygen. A decreasing $O_2$ concentration and/or increasing concentrations of $CO_2$ or $N_2$ depress the mold growth and aflatoxin formation. A. flavus grows competitively or associatively in the presence of other microorganisms and occasionally loses the competition with other microorganisms. Some lactic acid bacteria have been shown to reduce growth and aflatoxin production by A. parasiticus. Carbon source is the most important nutritional factors affecting aflatoxin formation by the molds. Sucrose, fructose and glucose are the most favorable carbon sources. Food substrates of plant derived products which have high carbohydrate content such as agricultural commodities and their products are most vulnerable to contamination by aflatoxins.

  • PDF

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method

  • Kim, Dong Wook;Park, DaSom;Ko, Chang Hyun;Shin, Kwangsoo;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.237-245
    • /
    • 2021
  • Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.

The effect of a desensitizer and $CO_2$ laser irradiation on bond performance between eroded dentin and resin composite

  • Ding, Meng;Shin, Sang-Wan;Kim, Min-Soo;Ryu, Jae-Jun;Lee, Jeong-Yol
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.165-170
    • /
    • 2014
  • PURPOSE. This study was aimed to evaluate effect of the desensitizing pretreatments on the micro-tensile bond strengths (${\mu}TBS$) to eroded dentin and sound dentin. MATERIALS AND METHODS. Forty-two extracted molars were prepared to form a flat dentin surface, and then they were divided into two groups. Group I was stored in distilled water while group II was subjected to a pH cycling. Each group was then subdivided into three subgroups according to desensitizing pretreatment used: a) pretreatment with desensitizer (Gluma); b) pretreatment with $CO_2$ Laser (Ultra Dream Pluse); c) without any pretreatment. All prepared surfaces were bonded with Single Bond 2 and built up with resin composite (Filtek Z250). The micro-tensile bond test was performed. Fracture modes were evaluated by stereomicroscopy. Pretreated surfaces and bonded interfaces were characterized by scanning electron microscope (SEM). The data obtained was analyzed by two-way ANOVA (${\alpha}$=0.05). RESULTS. For both sound and eroded dentin, samples treated with desensitizer showed the greatest ${\mu}TBS$, followed by samples without any treatment. And samples treated with $CO_2$ laser showed the lowest ${\mu}TBS$. SEM study indicated that teeth with eroded dentin appeared prone to debonding, as demonstrated by existence of large gaps between adhesive layers and dentin. CONCLUSION. Pretreatment with Gluma increased the ${\mu}TBS$ of Single Bond 2 for eroded and sound teeth. $CO_2$ laser irradiation weakened bond performance for sound teeth but had no effect on eroded teeth.

리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과 (Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material)

  • 김유영;하종근;조권구
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Quaternary Ammonium-Based Room Temperature Ionic Liquids as Components of Carbonate Electrolytes for Li-ion Batteries: Electrochemical Performance and Thermal Properties

  • Chernyshov, Denis V.;Shin, Woo Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권4호
    • /
    • pp.95-104
    • /
    • 2014
  • Electrochemical performance of Li-ion cells with $LiMn_2O_4$ cathodes and graphite anodes with carbonates electrolytes containing quaternary ammonium-based room temperature ionic liquids (ILs) is investigated. Eight different ILs based on tetraalkylammonium, pyrrolidinium or piperidinium cations paired with bis(trifluoromethylsulfonyl)imide or tris(pentafluoroethyl)trifluorophosphate anions are examined in combination with dimethyl carbonate as a main solvent and fluoroethylene carbonate as a solid electrolyte interface forming agent. It is shown that cycling properties of the cells are strongly affected by the content of ILs in the electrolyte mixtures and its increase corresponds to lower discharge capacity retention. Since viscosity and conductivity of ILs are of a great importance for the electrolytes formulation, some kind of combined parameter should be used for the assessment of IL applicability and calculated values of Walden products for neat ILs represent one of the possible options. Besides, positive effect of ILs on reduction of flammability and enhancement of thermal stability of electrolytes in contact with charged electrodes have been demonstrated by means of self-extinguishing time test and differential scanning calorimetry respectively.

공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상 (Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping)

  • 전형권;홍순현;김민정;구자훈;이희상;최규석;김천중
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

소나무와 굴참나무 임분의 토양 환경요인과 토양 이산화탄소 방출의 계절적 변화 (Seasonal Variations of Soil CO2 Efflux Rates and Soil Environmental Factors in Pinus densiflora and Quercus variabilis Stands)

  • 백경원;조창규;김춘식
    • 한국농림기상학회지
    • /
    • 제18권3호
    • /
    • pp.120-126
    • /
    • 2016
  • 본 연구는 유사한 입지에서 생육한 소나무와 굴참나무 임분의 토양 이산화탄소($CO_2$)와 이들 방출에 영향을 미치는 환경요인인 토양 온도, 토양 수분, 토양 pH, 전기전도도, 토양 유기탄소 농도 등을 2015년 3월부터 2016년 2월까지 1년 동안 조사하였다. 토양 $CO_2$ 방출량의 월별 변화는 두 임분 사이에 차이가 있어 하절기인 6월과 7월의 경우, 굴참나무 임분이 소나무 임분에 비해 유의적으로 높았으나, 타 계절은 차이가 없었다. 연 평균 토양 $CO_2$ 방출량의 경우, 굴참나무 임분이 $2.27{\pm}0.22{\mu}mol\;m^{-2}s^{-1}$로 소나무 임분의 $1.63{\pm}0.12{\mu}mol\;m^{-2}s^{-1}$ 에 비해 높게 나타났으며, 연 평균 토양 온도와 토양 수분함량도 굴참나무 임분이 소나무 임분에 비해 높았다. 토양 환경요인 중 토양 온도와 토양 $CO_2$ 방출량은 지수함수 관계(P<0.05)가 있었으며, $Q_{10}$ 값의 경우, 굴참나무 임분이 3.35로 소나무 임분 2.72에 비해 높아 토양 온도 상승 시, 굴참나무 임분의 토양 $CO_2$ 방출량이 소나무 임분에 비해 더 크게 증가하는 것으로 나타났다.