Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01599

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method  

Kim, Dong Wook (Department of Advanced Chemicals and Engineering, Chonnam National University)
Park, DaSom (Department of Advanced Chemicals and Engineering, Chonnam National University)
Ko, Chang Hyun (Department of Advanced Chemicals and Engineering, Chonnam National University)
Shin, Kwangsoo (Department of Chemical-Plant Mechanical Engineering, Hanyeong University)
Lee, Yun-Sung (Department of Advanced Chemicals and Engineering, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 237-245 More about this Journal
Abstract
Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.
Keywords
Lithium Ion Battery; Ni-rich Cathode; Capacity Fading; Atomic Layer Deposition; Coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Park, Y. J. Park, J. Electrochem. Sci., 2017, 8(2), 101-106.   DOI
2 A. C. Dillon, A. W. Ott, J. D. Way, S. M. George, Surf Sci., 1995, 322(1-3), 230-242.   DOI
3 Y. Kim, H. Lee, S. Kang, J. Mater. Chem. A., 2012, 22(25), 12874-12881.   DOI
4 B. Zhang, P. Dong, H. Tong, Y. Yao, J. Zheng, W. Yu, D. Chu, J. Alloys Compd., 2017, 706, 198-204.   DOI
5 Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, F. Aguesse, Nat. Energy., 2018, 3(11), 936-943.   DOI
6 W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, J. Cho, Angew. Chem. Int. Ed., 2015, 54(10), 4440-4457.   DOI
7 X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng, Sustain. Energy Fuels., 2018, 2(2), 413-421 .   DOI
8 J. Cho, T.-J. Kim, J. Kim, M. Noh, B. Park, J. Electrochem. Soc., 2004, 151(11), A1899.   DOI
9 J. G. Han, K. Kim, Y. Lee, N. S. Choi, Adv. Mater., 2019, 31(20), 1804822.   DOI
10 H. Zhang, L. Shi, Y. Zhao, Z. Wang, H. Chen, J. Zhu, S. Yuan, J. Power Sources., 2019, 435, 226773.   DOI
11 G. W. Yoo, J. T. Son, J. Electrochem. Sci., 2016, 7(2), 179-184.   DOI
12 J. W. Lee, Y. J. Park, J. Electrochem. Sci., 2016, 7(4), 263-268.   DOI
13 Z. Chen, Y. Qin, K. Amine, Y. K. Sun, J. Mater. Chem., 2010, 20(36), 7606-7612.   DOI
14 F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, Adv. Energy Mater., 2018, 8(4), 1701682.   DOI
15 S. H. Lee, G. J. Park, S. J. Sim, B. S. Jin, H. S. Kim, J. Alloys Compd., 2019, 791, 193-199.   DOI
16 K. Meng, Z. Wang, H. Guo, X. Li, and D. Wang, Electrochim. Acta., 2016, 211, 822-831.   DOI
17 S. W. Lee, M. S. Kim, J. H. Jeong, D. H. Kim, K. Y. Chung, K. C. Roh, K. B. Kim, J. Power Sources., 2017, 360, 206-214.   DOI
18 S. H. Lee, C. S. Yoon, K. Amine, Y. K. Sun, J. Power Sources., 2013, 234, 201-207.   DOI
19 R. Thangavel, M. Moorthy, B. K. Ganesan, W. Lee, W. S. Yoon, Y. S. Lee, Small, 2020, 16(41), 2003688.   DOI
20 H. V. Ramasamy, S. Sinha, J. Park, M. Gong, V. Aravindan, J. Heo, Y. S. Lee, J. Electrochem. Sci., 2019, 10(2), 196-205.
21 S. Hao, C. Wolverton, J. Phys. Chem. C., 2013, 117(16), 8009-8013.   DOI
22 M. D. Groner, F. H. Fabreguette, J. W. Elam, S. M. George, Chem. Mater., 2004, 16(4), 639-645.   DOI
23 T. Hatsukade, A. Schiele, P. Hartmann, T. Brezesinski, J. Rgen Janek, ACS Appl. Mater. Interfaces., 2018, 10(45), 38892-38899.   DOI
24 Y. Xi, Y. Liu, D. Zhang, S. Jin, R. Zhang, M. Jin, Solid State Ion., 2018, 327, 27-31.   DOI
25 Z. Zhang, D. Chen, C. Chang, RSC Adv., 2017, 7(81), 51721-51728.   DOI
26 A. W. Ott, J. W. Klaus, J. M. Johnson, S. M. George, Thin Solid Films, 1997, 292(1-2), 135-144.   DOI
27 M. D. Groner, J. W. Elam, F. H. Fabreguette, S. M. George, Thin Solid Films., 2002, 413(1-2), 186-197.   DOI
28 A. H. Alshehri, K. Mistry, V. H. Nguyen, K. H. Ibrahim, D. Munoz?Rojas, M. Yavuz, K. P. Musselman, Adv. Funct. Mater., 2019, 29(7), 1805533.   DOI