DOI QR코드

DOI QR Code

Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries

리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석

  • Sun, Ho-Jung (Department of Material Science & Engineering, Kunsan National University) ;
  • Lee, Jae-Ho (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Jeong, Hyun-Young (Department of Material Science & Engineering, Kunsan National University) ;
  • Seok, Dong-Chan (Plasma Technology Research Center, National Fusion Research Institute) ;
  • Jung, Yongho (Plasma Technology Research Center, National Fusion Research Institute) ;
  • Park, Gyungse (Department of Chemistry, Kunsan National University) ;
  • Shim, Joongpyo (Department of Nano & Chemical Engineering, Kunsan National University)
  • 선호정 (군산대학교 신소재공학과) ;
  • 이재호 (군산대학교 나노화학공학과) ;
  • 정현영 (군산대학교 신소재공학과) ;
  • 석동찬 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 정용호 (국가핵융합연구소 플라즈마기술연구센터) ;
  • 박경세 (군산대학교 화학과) ;
  • 심중표 (군산대학교 나노화학공학과)
  • Received : 2013.01.29
  • Accepted : 2013.04.26
  • Published : 2013.04.30

Abstract

$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

Keywords

References

  1. 요시오 마사키(김상필 역), 리튬 이온 2차 전지 2판, 재료와 응용, 다솜 출판사, 2002.
  2. 전자부품 연구원, 리튬 이차전지 기술동향 보고서, p. 18, 2005.
  3. G.V. Zhuang, G. Chen, J. Shim, X. Song, P.N. Ross, T.J. Richardson, "$Li_2CO_3$ in $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes and its effects on capacity and power", J. Power Sources, Vol. 134, 2004, p. 293. https://doi.org/10.1016/j.jpowsour.2004.02.030
  4. H. Liu, Y. Yang, J. Zhang, "Reaction mechanism and kinetics of lithium ion battery cathode material $LiNiO_2$ with $CO_2$", J. Power Sources, Vol. 173, 2007, p. 556. https://doi.org/10.1016/j.jpowsour.2007.04.083
  5. R. Moshtev, P. Zlatilova, S. Vasilev, I. Bakolova, A. Kozawa, "Synthesis, XRD characterization and electrochemical performance of overlithiated $LiNiO_2$", J. Power Sources, Vol. 81-82, 1999, p. 434. https://doi.org/10.1016/S0378-7753(99)00247-5
  6. K. Matsumoto, R. Kuzuo, K. Takeya, Yamanaka, "Effects of $CO_2$ in air on Li deintercalation from $LiNi_{1−x−y}Co_xAl_yO_2$", J. Power Sources, Vol. 81-82, 1999, p. 558. https://doi.org/10.1016/S0378-7753(99)00216-5
  7. 노태협, "차세대 산업 기술과 플라즈마", 물리학과 첨단기술, Vol. 17, 2008, p. 39.
  8. 엄환섭, "대기압 플라즈마와 응용", 한국진공학회지, Vol. 15, 2006, p. 117.
  9. A.A. Benedetti-Pichler, M. Cefola, B. Waldman, Ind. Eng. Chem. Anal. Ed. 11, 327 (1939). https://doi.org/10.1021/ac50134a012
  10. S. Miyazaki, T. Chiba, K. Ishida, "NON-AQUEOUS ELECTROLYTE SECONDARY CELL", US Patent 20110076558.
  11. T. Ohzuku, Y. Makimura, "Layered Lithium Insertion Material of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ for Lithium- Ion Batteries", Chem. Lett. Vol. 30, 2001, p. 642.
  12. J. Belharouak, Y.-K. Sun, K. Amine, "$Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ as a suitable cathode for high power applications", J. Power Sources, Vol. 123, 2003, p. 247. https://doi.org/10.1016/S0378-7753(03)00529-9
  13. Yabuuchi, Y. Koyama, N. Nakayama, T. Ohzuku, "Solid-State Chemistry and Electrochemistry of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ for Advanced Lithium-Ion Batteries: II. Preparation and Characterization", J. Electrochem. Soc. Vol. 152, 2005, p. A1434. https://doi.org/10.1149/1.1924227
  14. K. Shizuka, C. Kiyohara, K. Shima, Y. Takeda, "Effect of $CO_2$ on layered $Li_{1+z}Ni_{1-x-y}Co_xM_yO_2$ (M=Al,Mn) cathode materials for lithium ion batteries", J. Power Sources, Vol. 166, 2007, p. 233. https://doi.org/10.1016/j.jpowsour.2007.01.013
  15. Y.-K. Choi, K.-I Chung, W.-S. Kim, Y.-E. Sung, S.-M. Park, "Suppressive effect of $Li_2CO_3$ on initial irreversibility at carbon anode in Li-ion batteries", J. Power Sources, Vol. 104, 2002, p. 132. https://doi.org/10.1016/S0378-7753(01)00911-9
  16. T. Ohzuku, A. Ueda, "Solid-state redox reactions of $LiCoO_2$ for 4 volt secondary lithium cells", J. Electrochem. Soc, Vol. 141, 1994, p. 2972. https://doi.org/10.1149/1.2059267
  17. P. Wilk, J. Marzec, J. Molenda, "Structural and electrical properties of $LiNi_{1-y}Co_yO_2$", Solid State Ionics, Vol. 157, 2003, p. 109. https://doi.org/10.1016/S0167-2738(02)00196-0
  18. D.P. Abrahama, J. Liu, C.H. Chen, Y.E. Hyung, M. Stoll, N. Elsen, S. MacLaren, R. Twesten, R. Haasch, E. Sammann, I. Petrov, K. Amine, G. Henriksen, "Diagnosis of power fade mechanisms in high-power lithium-ion cells", J. Power Sources, Vol. 119-121, 2003, p. 511. https://doi.org/10.1016/S0378-7753(03)00275-1
  19. J. Shim, K.A. Striebel, "Characterization of highpower lithium-ion cells during constant current cycling: Part I. Cycle performance and electrochemical diagnostics", J. Power Sources, Vol. 122, 2003, p. 188. https://doi.org/10.1016/S0378-7753(03)00351-3
  20. Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, "Crystal and electronic structures of superstructural $Li_{1-x}[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2(0{\leq}x{\leq}1)$", J. Power Sources, Vol. 119-121, 2003, p. 644. https://doi.org/10.1016/S0378-7753(03)00194-0
  21. Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi, and T. Ohzuku, "Solid-State Chemistry and Electrochemistry of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ for Advanced Lithium-Ion Batteries: I. First-Principles Calculation on the Crystal and Electronic Structures", J. Electrochem. Soc., Vol. 151, 2004, p. A1545. https://doi.org/10.1149/1.1784823
  22. B. J. Hwang, Y. M. Tsai, D. Carlier, and G. Ceder, "A Combined Computational/ Experimental Study on $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$", Chem. Mater., Vol. 15, 2003, p. 3676. https://doi.org/10.1021/cm030299v
  23. N. Yabuuchi, Y. Makimura, T. Ohzuku, "Solid- State Chemistry and Electrochemistry of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ for Advanced Lithium-Ion Batteries: III. Rechargeable Capacity and Cycleability", J. Electrochem. Soc. Vol. 154, 2007, p. A314. https://doi.org/10.1149/1.2455585
  24. K.-T. Lee, S.-T. Myung, Y.-K. Sun, "Synthesis and electrochemical performances of core-shell structured $Li[(Ni_{1/3}Co_{1/3}Mn_{1/3})_{0.8}(Ni_{1/2}Mn_{1/2})_{0.2}]O_2$ cathode material for lithium ion batteries", J. Power Sources, Vol. 195, 2010, p. 6043. https://doi.org/10.1016/j.jpowsour.2010.02.002
  25. I. Kwon, H. Kim, M. Song, "Synthesis of $LiMn_{1.92}Co_{0.08}O_4$ and $LiNi_{1-y}Co_yO_2$ and electrochemical properties of their mixtures for lithium secondary battery", Vol. 15, 2004, p. 62.

Cited by

  1. Exploring potential biomarker responses to lithium in Daphnia magna from the perspectives of function and signaling networks vol.13, pp.1, 2017, https://doi.org/10.1007/s13273-017-0009-6