DOI QR코드

DOI QR Code

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material

리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과

  • Kim, Yoo-Young (Dept. of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Ha, Jong-Keun (Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University) ;
  • Cho, Kwon-Koo (Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 하종근 (경상대학교 그린에너지융합연구소) ;
  • 조권구 (경상대학교 나노신소재융합공학과 & 그린에너지융합연구소)
  • Received : 2019.02.01
  • Accepted : 2019.02.18
  • Published : 2019.02.28

Abstract

Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Keywords

References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough: Mater. Res. Bull., 15 (1980) 783. https://doi.org/10.1016/0025-5408(80)90012-4
  2. B. Xu, D. Qian, Z. Wang and Y. S. Meng: Mater. Sci. Eng., R, 73 (2012) 51. https://doi.org/10.1016/j.mser.2012.05.003
  3. W. Ahn, S. N. Lim, K. N. Jung, S. H. Yeon, K. B. Kim, H. S. Song and K. H. Shin: J. Alloys Compd., 609 (2014) 143. https://doi.org/10.1016/j.jallcom.2014.03.123
  4. J. Xiao, N. A. Chernova and M. S. Whittingham: Chem. Mater., 22 (2010) 1180. https://doi.org/10.1021/cm902627w
  5. S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim and Y.-K. Sun: ACS Energy Lett., 2 (2017) 196. https://doi.org/10.1021/acsenergylett.6b00594
  6. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim and J. Cho: Angew. Chem. Int. Ed., 54 (2015) 4440. https://doi.org/10.1002/anie.201409262
  7. M. Zhang, G. Hu, L. Wu, Z. Peng, K. Du and Y. Cao: Electrochim. Acta, 232 (2017) 80. https://doi.org/10.1016/j.electacta.2017.02.064
  8. C.-C. Yang, Z.-Y. Lian S. J. Lin, J.-Y. Shih and W.-H. Chen: Electrochim. Acta, 134 (2014) 258. https://doi.org/10.1016/j.electacta.2014.04.100
  9. Z. Huang, J. Gao, X. He, J. Li and C. Jiang: J. Power Sources, 202 (2012) 284. https://doi.org/10.1016/j.jpowsour.2011.10.143
  10. P. Hou, X. Wang, D. Song, X. Shi, L. Zhang, J. Guo and J. Zhang: J. Power Sources, 265 (2014) 174. https://doi.org/10.1016/j.jpowsour.2014.04.107
  11. K. C. Kam and M. M. Doeff: J. Mater. Chem., 21 (2011) 9991. https://doi.org/10.1039/c0jm04193a
  12. H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun: J. Power Sources, 233 (2013) 121. https://doi.org/10.1016/j.jpowsour.2013.01.063
  13. K.-K Lee and K.-B Kim: J. Electrochem. Soc., 147 (2000) 1709. https://doi.org/10.1149/1.1393422
  14. M. Noh and J. Cho: J. Electrochem. Soc., 160 (2013) A105. https://doi.org/10.1149/2.004302jes
  15. S. Sallis, N. Pereira, P. Mukherjee, N. F. Quackenbush, N. Faenza, C. Schlueter, T.-L. Lee, W. L. Yang, F. Cosandey, G. G. Amatucci and L. F. Piper: Appl. Phys. Lett., 108 (2016) 263902. https://doi.org/10.1063/1.4954800
  16. P. Oh, B. Song, W. Li and A. Manthiram: J. Mater. Chem. A, 4 (2016) 5839. https://doi.org/10.1039/C6TA01061J
  17. D. Aurbach: J. Power Sources, 89 (2000) 206. https://doi.org/10.1016/S0378-7753(00)00431-6
  18. S. Hwang, S. M. Kim, S.-M. Bak, K. Y. Chung and W. Chang: Chem. Mater., 27 (2015) 6044. https://doi.org/10.1021/acs.chemmater.5b02457
  19. O. Dolotko, A. Senyshyn, M. J. Mhlbauer, K. Nikolowski and H. Ehrenberg: J. Power Sources, 255 (2014) 197. https://doi.org/10.1016/j.jpowsour.2014.01.010
  20. K. Min, K. Kim, C. Jung, S.-W. Seo, Y. Y. Song, H. S. Lee, J. Shin and E. Cho: J. Power Sources, 315 (2016) 111. https://doi.org/10.1016/j.jpowsour.2016.03.017
  21. J. Zheng, T. Liu, Z. Hu, Y. Wei, X. Song, Y. Ren, W. Wang, M. Rao, Y. Lin, Z. Chen, J. Lu, C. Wang, K. Amine and F. Pan: J. Am. Chem. Soc., 138 (2016) 13326. https://doi.org/10.1021/jacs.6b07771
  22. K. Wu, F. Wang, L. Gao, M.-R. Li, L. Xiao, L. Zhao, S. Hu, X. Wang, Z. Xu and Q. Wu: Electrochim. Acta, 75 (2012) 393. https://doi.org/10.1016/j.electacta.2012.05.035
  23. H. Kuriyama, H. Saruwatari, H. Satake, A. Shima, F. Uesugi, H. Tanaka and T. Ushirogouchi: J. Power Sources, 275 (2015) 99. https://doi.org/10.1016/j.jpowsour.2014.10.197
  24. Y. Huang, Y. Huang and X. Hu: Electrochim. Acta, 231 (2017) 294. https://doi.org/10.1016/j.electacta.2017.02.067
  25. D.-J. Lee, B. Scrosati and Y.-K. Sun: J. Power Sources, 196 (2011) 7742. https://doi.org/10.1016/j.jpowsour.2011.04.007
  26. Y. Dai, L. Cai and R. E. White: J. Power Sources, 247 (2014) 365. https://doi.org/10.1016/j.jpowsour.2013.08.113
  27. H. Xie, K. Du, G. Hu, Z. Peng and Y. Cao: J. Phys. Chem. C, 120 (2016) 3235. https://doi.org/10.1021/acs.jpcc.5b12407
  28. G. Hu, M. Zhang, L. Liang, Z. Peng, K. Du and Y. Cao: Electrochim. Acta, 190 (2016) 264. https://doi.org/10.1016/j.electacta.2016.01.039
  29. B. Huang, X. Li, Z. Wang, H. Guo, L. Shen and J. Wang: J. Power Sources, 252 (2014) 200. https://doi.org/10.1016/j.jpowsour.2013.11.092
  30. I. M. Markus, F. Lin, K. C. Kam, M. Asta and M. M. Doeff: J. Phys. Chem. Lett., 5 (2014) 3649. https://doi.org/10.1021/jz5017526
  31. H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang Y. Lai and J. Li: Electrochim. Acta, 135 (2014) 77. https://doi.org/10.1016/j.electacta.2014.04.183
  32. D. Wang, X. Li, Z. Wang, H. Guo, Y. Xu, Y. Fan and J. Ru: Electrochim. Acta, 188 (2016) 48. https://doi.org/10.1016/j.electacta.2015.11.093
  33. Z. Yang, X. Guo, W. Xiang, W. Hua, J. Zhang, F. He, K. Wang, Y. Xiao and B. Zhong: J. Alloys Compd., 699 (2017) 358. https://doi.org/10.1016/j.jallcom.2016.11.245
  34. X. Li, Z. Xie, W. Liu, W. Ge, H. Wang and M. Qu: Electrochim. Acta, 174 (2015) 1122. https://doi.org/10.1016/j.electacta.2015.06.099
  35. N. Hamnabard, Y. Hanifehpour and S. W. Joo: J. Ind. Eng. Chem., 49 (2017) 88. https://doi.org/10.1016/j.jiec.2017.01.012
  36. S. Zhong, Y. Wang, J. Liu, K. Wan and F. L : J. Rare Earths, 29 (2011) 891. https://doi.org/10.1016/S1002-0721(10)60562-5
  37. W. Choi, S.-R. Park and C. H. Kang: J. Korean Powder Metall. Inst., 23 (2016) 136 (Korean). https://doi.org/10.4150/KPMI.2016.23.2.136
  38. H.-G. Jung, N. V. Gopal, J. Prakash, D.-W. Kim and Y.-K. Sun: Electrochim. Acta, 68 (2012) 153. https://doi.org/10.1016/j.electacta.2012.02.057
  39. M. S. Whittingham: Chem. Rev., 104 (2004) 4271. https://doi.org/10.1021/cr020731c