• Title/Summary/Keyword: $CO_2$ Ni

Search Result 1,882, Processing Time 0.027 seconds

Synthesis and Electrochemical Properties of Polymeric Pentadentate Schiff Base Co (Ⅱ), Ni (Ⅱ), and Cu (Ⅱ) Complexes (Polymer 다섯자리 Schiff Base Co(Ⅱ), Ni(Ⅱ) 및 Cu(Ⅱ) 착물들의 합성과 전기화학적 성질)

  • Choe, Yong Guk;Choe, Ju Hyeong;Park, Jong Dae;Sim, U Jong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 1994
  • Polymeric complexes such as M(Ⅱ)(PVPS)(SND), M(Ⅱ)(PVPS)(SOPD) have been prepared with monomeric complexes, M(Ⅱ)(SND) and M(Ⅱ)(SOPD)[M: Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)] and polymer PVPS. These complexes have been indentified by elemental analysis, spectroscopy, and T.G.A. From the results, it was found that M(Ⅱ)(PVPS)(SND), M(Ⅱ)(PVPS)(SOPD) complexes were penta-coordinated configuration. Electrochemical properties of these complexes studied by cyclic voltammetry and differential pulse polarography in 0.1 M TEAP-DMF solution at glassy carbon electrode. Co(Ⅱ)(PVPS)(SND) and Co(Ⅱ)(PVPS)(SOPD) showed irreversible two step reduction, such as Co(Ⅲ)/Co(Ⅱ) and Co(Ⅱ)/Co(Ⅰ), and Ni(Ⅱ)(PVPS)(SND), Ni(Ⅱ)(PVPS)(SOPD), Cu(Ⅱ)(PVPS)(SND), and Cu(Ⅱ)(PVPS)(SOPD) complexes showed irreversible one step reduction, such as Ni(Ⅱ)/Ni(Ⅰ) and Cu(Ⅱ)/Cu(Ⅰ), respectively.

  • PDF

Dry Etching of NiFe, NiFeCo, and Ta in Cl2/Ar Inductively Coupled Plasma (Cl2/Ar 유도 결합 플라즈마를 이용한 NiFe, NiFeCo, Ta의 건식식각)

  • Ra, Hyun-Wook;Park, HyungJo;Kim, Ki Ju;Kim, Wan-Young;Hahn, Yoon-Bong
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.76-79
    • /
    • 2005
  • Dry etching of NiFe, NiFeCo, and Ta for magnetic random access memory (MRAM) by inductively coupled plasmas (ICPs) of $Cl_2/Ar$ has been carried out. NiFe and NiFeCo showed maximum etch rates at a particular ICP source power, but the etch rate of Ta increased with the ICP source power. The etch rates of the magnetic thin films increased with the RF chuck power, but decreased with the operating pressure and the $Cl_2$ concentration. To avoid a corrosion problem by chlorine, the etched samples were rinsed with de-ionized water for 5 minutes after etching. The etch profile showed a clean and smooth surface at 50% $Cl_2$ concentration.

The Novel Synthetic Route to Li$Co_{y}Ni_{1-y}O_{2}$ as a Cathode Material in Lithium Secondary Batteries

  • Gang, Seong Gu;Ryu, Gwang Seon;Jang, Sun Ho;Park, Sin Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1328-1332
    • /
    • 2001
  • The structure and electrochemical properties of the LixCoyNi1-yO2 (y=0.1, 0.3, 0.5, 0.7, 1.0) system synthesized by solid state reaction with various starting materials have been investigated to optimize the characteristics and synthetic conditions of the LixCoyNi1-yO2. The first discharge capacities of LixCoyNi1-yO2 are 60 mAh/g-180 mAh/g with synthetic conditions. Among them, the LixNi0.7Co0.3O2, which was prepared with LiOH, NiO, and Co3O4 at $850^{\circ}C$, had the best electrochemical properties. The first discharge capacity of the compound was 180 mAh/g.

Ni-Co Alloy Electroforming for Micro Mold Fabrication (마이크로 금형 제작을 위한 니켈-코발트 합금 전주기술개발)

  • Shin S. H.;Jeong M. K.;Kim Y. S.;Han S. H.;Hur Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The factors affecting Ni-Co alloy electroforming were investigated to determine the optimum bath composition and electroplating parameters, like pH, temperature, and current density, suitable for high speed fabrication of a micro mold with longer lifetime. To obtain alloy deposits having uniform thickness and composition, electroplating parameters were finely tuned with home-made electroforming apparatus. Ni-Co alloy deposits had linearly increased Co with $Co^{2+}$ ion concentration in electroplating bath, and showing $412H_v$ of Victors hardness at $23wt\%$ of Co content. For Ni-Co alloy, sulfonate and diol related organic additives were very effective to alleviate its residual stress and surface roughness. The maximum deposition rate was $106{\mu}m/hr$ at 10ASD and the tensile strength of alloy deposit was 2 times larger than that of Ni only case.

  • PDF

CO Oxidation Activities of Ni and Pd-TiO2@SiO2 Core-Shell Nanostructures

  • Do, Yeji;Cho, Insu;Park, Yohan;Pradhan, Debabrata;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3635-3640
    • /
    • 2013
  • We prepared Ni and Pd-modified $TiO_2@SiO_2$ core-shell nanostructures and then analyzed them by scanning electron microscopy, optical microscopy, X-ray diffraction crystallography, FT-IR and UV-Visible absorption spectroscopy. In addition, their CO oxidation performance was tested by temperature-programmed mass spectrometry. The CO oxidation activity showed an order of Ni-$TiO_2@SiO_2$ ($900^{\circ}C$) < Ni-$TiO_2@SiO_2$ ($90^{\circ}C$) < Ni-$TiO_2@SiO_2$ ($450^{\circ}C$) in the first CO oxidation run, and greatly improved activity in the same order in the second run. The $T_{10%}$ (the temperature at 10% CO conversion) corresponds to the CO oxidation rate of $2.8{\times}10^{-5}$ molCO $g{_{cat}}^{-1}s^{-1}$. For Ni-$TiO_2@SiO_2$ ($450^{\circ}C$), the $T_{10%}$ was observed at $365^{\circ}C$ in the first run and at $335^{\circ}C$ in the second run. For the Pd-$TiO_2@SiO_2$ ($450^{\circ}C$), the $T_{10%}$ was observed at a much lower temperature of $263^{\circ}C$ in the first CO oxidation run, and at $247^{\circ}C$ in the second run. The CO oxidation activities of transition metal modified $TiO_2@SiO_2$ core-shell nanostructures presented herein provide new insights that will be useful in developing catalysts for various environments.

Complex Permeability Analysis of NiCuZn Ferrites (NiCuZn 계 페라이트의 조성에 따른 복소투자율 변화 해석)

  • 남중희;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.382-387
    • /
    • 1996
  • The characteristics of the complex permeability of ${(Ni_{x}Cu_{0.2}Zn_{0.8-x}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ with various Ni and $Co_{3}O_{4}$ contents were investigated in this work. It is found that the NiCuZn ferrites with $x{\geq}0.6$ have a relatively small peak width of the imaginary part of permeability $\mu$". The resonance frequency is increased as Ni content becomes higher, where the loss is low. The $\mu$" value decreases with increasing FezO, deficiency, but the resonance frequency($f_{\mu"max}$) is only slightly affected by $Fe_{2}O_{3}$ deficiency. In case of $Co_{3}O_{4}$ addition to the NiCuZn ferrites, the $f_{\mu"max}$ increases since the initial permeability decreases with the amount of $Co_{3}O_{4}$. It is concluded that the Ni content in the NiCuZn ferrite is a dominant factor for the total loss of these spinel ferrites.

  • PDF

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

Study on The Synthesis of The Ultra-Fine (Ni, Zn)-ferrite by The Hydrothermal Method and its $CO_2$ Decomposition (수열합성법에 의한(Ni, Zn)-Ferrites의 초미세분말 합성공정 및 $CO_2$분해 특성 연구)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.223-226
    • /
    • 2000
  • The oxygen deficient ferrites $(Ni_x,\; Zn_{1-x})Fe_2O_{4-{\delta}}$ can decompose $CO_2$ as C and $O_2$ at a low temperature of about $300^{\circ}C$. Ultra powders of $(Ni_x,\; Zn_{1-x})Fe_2O_4$ for the $CO_2$ decomposition were prepared by the hydrothermal methods. The XRD result of synthesized ferries showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with the starting molar ratios of the mixed solution prior to reaction. The BET surface area of the synthesized(Ni, Zn)-ferrites was above $110\textrm{m}^2/g$ and its particle size was very as small as about 5~10 nm. The $CO_2$ decomposition efficiency of the oxygen deficient ferrites($(Ni_x,\;Zn_{1-x})Fe_2O_{4-{\delta}}$) was almost independent with composition and the $CO_2$ decomposition efficiency of ternary (Ni, Zn)-ferrites was better than of binary Ni-ferrites.

  • PDF

Magnetostriction and Stress of NiFeCr/(Cu/Co90Fe10)×N/NiFeCr Multilayer Films (NiFeCr/(Cu/Co90Fe10)×N/NiFeCr 다층박막의 자기변형과 응력에 관한 연구)

  • Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • The magnetostriction and stress of multilayer $NiFeCr/(Cu/Co_{90}Fe_{10}){\times}N/NiFeCr$ films were investigated. As the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers was increased, the saturation magnetostriction decreased from $-5.6\times10^{-6}$ at 2 bilayers to $-8.5\times10^{-6}$ at 20 bilayers. A change of CoFe thickness from 10 to $20{\AA}$ caused a decrease in the magnitude of tensile stress from 980MPa to 590MPa as the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers increased from 2 to 20. The maximum magnetostrictive anisotropy field that could be developed due to nonzero magnetostriction and stress is calculated to be 135.7 Oe when the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers is 10.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.