Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3635

CO Oxidation Activities of Ni and Pd-TiO2@SiO2 Core-Shell Nanostructures  

Do, Yeji (Department of Chemistry, Yeungnam University)
Cho, Insu (Department of Chemistry, Yeungnam University)
Park, Yohan (Department of Chemistry, Yeungnam University)
Pradhan, Debabrata (Material Science Centre, Indian Institute of Technology)
Sohn, Youngku (Department of Chemistry, Yeungnam University)
Publication Information
Abstract
We prepared Ni and Pd-modified $TiO_2@SiO_2$ core-shell nanostructures and then analyzed them by scanning electron microscopy, optical microscopy, X-ray diffraction crystallography, FT-IR and UV-Visible absorption spectroscopy. In addition, their CO oxidation performance was tested by temperature-programmed mass spectrometry. The CO oxidation activity showed an order of Ni-$TiO_2@SiO_2$ ($900^{\circ}C$) < Ni-$TiO_2@SiO_2$ ($90^{\circ}C$) < Ni-$TiO_2@SiO_2$ ($450^{\circ}C$) in the first CO oxidation run, and greatly improved activity in the same order in the second run. The $T_{10%}$ (the temperature at 10% CO conversion) corresponds to the CO oxidation rate of $2.8{\times}10^{-5}$ molCO $g{_{cat}}^{-1}s^{-1}$. For Ni-$TiO_2@SiO_2$ ($450^{\circ}C$), the $T_{10%}$ was observed at $365^{\circ}C$ in the first run and at $335^{\circ}C$ in the second run. For the Pd-$TiO_2@SiO_2$ ($450^{\circ}C$), the $T_{10%}$ was observed at a much lower temperature of $263^{\circ}C$ in the first CO oxidation run, and at $247^{\circ}C$ in the second run. The CO oxidation activities of transition metal modified $TiO_2@SiO_2$ core-shell nanostructures presented herein provide new insights that will be useful in developing catalysts for various environments.
Keywords
CO oxidation; $TiO_2@SiO_2$; Ni-$TiO_2@SiO_2$; Pd-$TiO_2@SiO_2$; Core-shell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Royer, S.; Duprez, D. ChemCatChem 2011, 3, 24.   DOI
2 Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Nature 2009, 458, 746.   DOI   ScienceOn
3 Twigg, M. V. Appl. Catal. B 2007, 70, 2.   DOI   ScienceOn
4 Campbell, C. T.; Sharp, J. C.; Yao, Y. X.; Karp, E. M.; Silbaugh, T. L. Faraday Discuss. 2011, 152, 227.   DOI   ScienceOn
5 Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Sheng Dai, S. ACS Catal. 2012, 2, 2537.   DOI   ScienceOn
6 Wang, D.; Xu, R.; Wang, X.; Li, Y. Nanotechnol. 2006, 17, 979.   DOI   ScienceOn
7 Yan, N.; Chen, Q.; Wang, F.; Wang, Y.; Zhong, H.; Hu, L. J. Mater. Chem. A 2013, 1, 637.   DOI
8 Kim, M.-Y.; Choi, J.-S.; Toops, T. J.; Jeong, E.-S.; Han, S.-W.; Schwartz, V.; Chen, J. Catalysts 2013, 3, 88.
9 Tian, C.; Chai, S.-H.; Mullins, D. R.; Zhu, X.; Binder, A.; Guo, Y.; Dai, S. Chem. Commun. 2013, 49, 3464.   DOI   ScienceOn
10 Zeng, H. C. Acc. Chem. Res. 2013, 46, 226.   DOI   ScienceOn
11 Park, J. C.; Bang, J. U.; Lee, J.; Ko, C. H.; Song, H. J. Mater. Chem. 2010, 20, 1239.   DOI   ScienceOn
12 Zhao, N.; Yao, Y.; Feng, J.; Yao, M.; Li, F. Water Air Soil Pollut. 2012, 223, 5855.   DOI
13 Wang, R. H.; Wang, X. W.; John, H.; Xin, J. H. ACS Appl. Mater. Interfaces 2010, 2, 82.   DOI   ScienceOn
14 Qian, K.; Luo, L.; Bao, H.; Hua, Q.; Jiang, Z.; Huang, W. Catal. Sci. Technol. 2013, 3, 679.   DOI
15 Zhang, X.; Qu, Z.; Li, X.; Wen, M.; Quan, X.; Ma, D.; Wu, J. Sep. Purif. Technol. 2010, 72, 395.   DOI   ScienceOn
16 Yu, L.; Shi, Y.; Zhao, Z.; Yin, H.; Wei, Y.; Liu, J.; Kang, W.; Jiang, T.; Wang, A. Catal. Commun. 2011, 22, 616.
17 Tian, D.; Yong, G.; Dai, Y.; Yan, X.; Liu, S. Catal. Lett. 2009, 130,211.   DOI
18 Afanasev, D. S.; Yakovina, O. A.; Kuznetsova, N. I.; Lisitsyn, A. S. Catal. Commun. 2012, 22, 43.   DOI   ScienceOn
19 Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H. J. Am. Chem. Soc. 2011, 133, 11422.   DOI   ScienceOn
20 Assaf, P. G. M.; Nogueira, F. G. E.; Assaf, E. M. Catal. Today 2013, 213, 2.   DOI   ScienceOn
21 Urasaki, K.; Tanpo, Y.; Nagashima, Y.; Kikuchi, R.; Satokawa, S. Appl. Catal. A 2013, 452, 174.   DOI   ScienceOn
22 Viktorov, V. V.; Belaya, E. A.; Serikov, A. S. Inorg. Mater. 2012,48, 488.   DOI
23 Wang, S.-Y.; Li, N.; Zhou, R. M.; Jin, L.-Y.; Hu, G.-S.; Lu, J.-Q.; Luo, M.-F. J. Mol. Catal. A 2013, 374, 53.
24 Cui, Y.; Wang, C.; Wu, S.; Liu, G.; Zhang, F.; Wang, T. CrystEngComm. 2011, 13, 4930.   DOI   ScienceOn
25 Qu, Y.; Zhou, W.; Ren, Z.; Du, S.; Meng, X.; Tian, G.; Pan, K.; Wang, G.; Fu, H. J. Mater. Chem. 2012, 22, 16471.   DOI   ScienceOn
26 Zhang, Z.; Mestl, G.; Knozinger, H.; Sachtler, W. M. H. Appl. Catal. A 1992, 89, 155.   DOI   ScienceOn
27 Jeon, H. J.; Yi, S.-C.; Oh, S.-G. Biomater. 2003, 24, 4921.   DOI   ScienceOn
28 Nam, J. W.; Kim, K.-D.; Kim, D. W.; Seo, H. O.; Kim, Y. D.; Lim, D. C. Curr. Appl. Phys. 2012, 12, 429.   DOI   ScienceOn
29 Kim, J. Y.; Jin, M.; Lee, K. J.; Cheon, J. Y.; Joo, S. H.; Kim, J. M.; Moon, H. R. Nanoscale Res. Lett. 2012, 7, 461.   DOI   ScienceOn