DOI QR코드

DOI QR Code

Magnetostriction and Stress of NiFeCr/(Cu/Co90Fe10)×N/NiFeCr Multilayer Films

NiFeCr/(Cu/Co90Fe10)×N/NiFeCr 다층박막의 자기변형과 응력에 관한 연구

  • Jo, Soon-Chul (School of Electronic Engineering, Soongsil University)
  • 조순철 (숭실대학교 정보통신전자공학부)
  • Published : 2010.02.28

Abstract

The magnetostriction and stress of multilayer $NiFeCr/(Cu/Co_{90}Fe_{10}){\times}N/NiFeCr$ films were investigated. As the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers was increased, the saturation magnetostriction decreased from $-5.6\times10^{-6}$ at 2 bilayers to $-8.5\times10^{-6}$ at 20 bilayers. A change of CoFe thickness from 10 to $20{\AA}$ caused a decrease in the magnitude of tensile stress from 980MPa to 590MPa as the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers increased from 2 to 20. The maximum magnetostrictive anisotropy field that could be developed due to nonzero magnetostriction and stress is calculated to be 135.7 Oe when the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers is 10.

$NiFeCr/(Cu/Co_{90}Fe_{10}){\times}N/NiFeCr$ 다층박막의 자기변형과 응력에 관하여 연구하였다. Cu $15{\AA}$/CoFe $15{\AA}$ 이중층의 수가 증가할수록 포화자기변형상수가 2층에서 $-5.6\times10^{-6}$로부터 20층에서 $-8.5\times10^{-6}$으로 감소하였다. CoFe층의 두께가 10에서 $20{\AA}$으로 증가되었을 때 포화자기변형상수의 크기가 약 $1\times10^{-6}$ 만큼 감소하였다. Cu $15{\AA}$/CoFe $15{\AA}$ 이중층의 층수가 2에서 20으로 증가 되었을때 다층박막의 인장응력의 크기가 980 MPa에서 590 MPa로 감소하였다. 자기변형과 박막의 응력으로부터 형성될 수 있는 최대 자기변형이방성자장은 Cu $15{\AA}$/CoFe $15{\AA}$ 이중층의 수가 10일 때 135.7 Oe 이었다.

Keywords

References

  1. R. Rottmayer and J.-G. Zhu, IEEE Tran. Magn., 31, 2597 (1995). https://doi.org/10.1109/20.490065
  2. L.-C. Wang, H. J. Hatton, M. D. Cooke, W. M. Rainforth, and C. J. D. Hetherington, Abstracts of the Joint MMM-Intermag (2001).
  3. H. Awano, Y. Suzuki, T. Yamazaki, T. Katayama, and A. Itoh, IEEE Tran. Magn., 26, 2742 (1990). https://doi.org/10.1109/20.104857
  4. O. Song, C. A. Ballentine, and R. C. O'andley, Appl. Phys. Lett., 64, 2593 (1994). https://doi.org/10.1063/1.111536
  5. B. A. Gurney, J.-P. Nozieres, V. S. Sperious, H. Lefakis, D. R. Wilhoit, and P. Baumgart, Digests of INTERMAG (1997).
  6. G. Choe, IEEE Tran. Magn., 35, 3838 (1999). https://doi.org/10.1109/20.800682
  7. C.-Y. Hung, M. Mao, S. Funad, T. Schneider, L. Miloslavsky, M. Miller, C. Qian, and H. C. Tong, J. Appl. Phys., 87(9), 6618 (2000). https://doi.org/10.1063/1.372789
  8. S. Jo and M. Seigler, Appl. Phys. Lett., 80(1), 82 (2002). https://doi.org/10.1063/1.1409271
  9. H. Fukuzawa, Y. Kamiguchi, K. Koi, H. Iwasaki, and M. Sahashi, J. Appl. Phys., 91(5), 3120 (2002). https://doi.org/10.1063/1.1434551
  10. J. J. Qiu, G. C. Han, K. B. Li, Z. Y. Liu, and B. Y. Zong, J. Appl. Phys., 99, 094304 (2006). https://doi.org/10.1063/1.2194117
  11. A. C. Tam and H. Schroeder, IEEE Tran. Magn., 25, 2692 (1989).

Cited by

  1. Giant magnetoresistance of CoFe/Cu superlattices with the (Ni80Fe20)60Cr40 buffer layer vol.116, pp.10, 2015, https://doi.org/10.1134/S0031918X15100026
  2. Calibration Technique of Liquid Density Measurement using Magnetostriction Technology vol.51, pp.8, 2014, https://doi.org/10.5573/ieie.2014.51.8.178
  3. Giant Magnetoresistance of Metallic Exchange-Coupled Multilayers and Spin Valves vol.118, pp.13, 2017, https://doi.org/10.1134/S0031918X17130038