• Title/Summary/Keyword: $0.18{\mu}m$ CMOS

Search Result 599, Processing Time 0.027 seconds

Design of a Sub-micron Locking Time Integer-N PLL Using a Delay Locked-Loop (지연고정루프를 이용한 $1{\mu}s$ 아래의 위상고정시간을 가지는 Integer-N 방식의 위상고정루프 설계)

  • Choi, Hyek-Hwan;Kwon, Tae-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2378-2384
    • /
    • 2009
  • A novel phase-locked loop(PLL) architecture of sub-micron locking time has been proposed. Input frequency is multiplied by using a delay-locked loop(DLL). The input frequency of a PLL is multiplied while the PLL is out of lock. The multiplied input frequency makes the PLL having a wider loop bandwidth. It has been simulated with a $0.18{\mu}m$ 1.8V CMOS process. The simulated locking time is $0.9{\mu}s$ at 162.5MHz and 2.6GHz, input and output frequency, respectively.

Extension of the Dynamic Range using the Switching Operation of In-Pixel Inverter in Complementary Metal Oxide Semiconductor Image Sensors

  • Seong, Donghyun;Choi, Byoung-Soo;Kim, Sang-Hwan;Lee, Jimin;Lee, Jewon;Lee, Junwoo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.71-75
    • /
    • 2019
  • This paper proposes the extension of the dynamic range in complementary metal oxide semiconductor (CMOS) image sensors (CIS) using switching operation of in-pixel inverter. A CMOS inverter is integrated in each unit pixel of the proposed CIS for switching operations. The n+/p-substrate photodiode junction capacitances are added to each unit pixel. When the output voltage of the photodiode is less than half of the power supply voltage of the CMOS inverter, the output voltage of the CMOS inverter changes from 0 V to the power supply voltage. Hence, the output voltage of the CMOS inverter is adjusted by changing the supply voltage of the CMOS inverter. Thus, the switching point is adjusted according to light intensity when the supply voltage of the CMOS inverter changes. Switching operations are then performed because the CMOS inverter is integrated with in each unit pixel. The proposed CIS is composed of a pixel array, multiplexers, shift registers, and biasing circuits. The size of the proposed pixel is $10{\mu}m{\times}10{\mu}m$. The number of pixels is $150(H){\times}220(V)$. The proposed CIS was fabricated using a $0.18{\mu}m$ 1-poly 6-metal CMOS standard process and its characteristics were experimentally analyzed.

A 6Gbps 1:2 Demultlplexer Design Using Micro Stacked Spiral inductor in CMOS Technology (Micro Stacked Spiral Inductor를 이용한 6Gbps 1:2 Demultiplexer 설계)

  • Choi, Jung-Myung;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.58-64
    • /
    • 2008
  • A 6Gbps 1:2 demultiplexer(DEMUX) IC using $0.18{\mu}m$ CMOS was designed and fabricated. For high speed performance current mode logic(CML) flipflop was used and inductive peaking technology was used so as to obtain higher speed than conventional Current mode logic flipflop. On-chip spiral inductor was designed to maximize the inductive peaking effect using stack structure. Total twelve inductors of $100{\mu}m^2$ area increase was used. The measurement was processed on wafer and 1:2 demultiplexer with and without micro stacked spiral inductors were compared. For 6Gbps data rate measurement, eye width was improved 7.27% and Jitter was improved 43% respectively. Power consumption was 76.8mW and eye height was 180mV at 6 Gbps

Low-Power Direct Conversion Transceiver for 915 MHz Band IEEE 802.15.4b Standard Based on 0.18 ${\mu}m$ CMOS Technology

  • Nguyen, Trung-Kien;Le, Viet-Hoang;Duong, Quoc-Hoang;Han, Seok-Kyun;Lee, Sang-Gug;Seong, Nak-Seon;Kim, Nae-Soo;Pyo, Cheol-Sig
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.33-46
    • /
    • 2008
  • This paper presents the experimental results of a low-power low-cost RF transceiver for the 915 MHz band IEEE 802.15.4b standard. Low power and low cost are achieved by optimizing the transceiver architecture and circuit design techniques. The proposed transceiver shares the analog baseband section for both receive and transmit modes to reduce the silicon area. The RF transceiver consumes 11.2 mA in receive mode and 22.5 mA in transmit mode under a supply voltage of 1.8 V, in which 5 mA of quadrature voltage controlled oscillator is included. The proposed transceiver is implemented in a 0.18 ${\mu}m$ CMOS process and occupies 10 $mm^2$ of silicon area.

  • PDF

Design of a Silicon Neuron Circuit using a 0.18 ㎛ CMOS Process (0.18 ㎛ CMOS 공정을 이용한 실리콘 뉴런 회로 설계)

  • Han, Ye-Ji;Ji, Sung-Hyun;Yang, Hee-Sung;Lee, Soo-Hyun;Song, Han-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.457-461
    • /
    • 2014
  • Using $0.18{\mu}m$ CMOS process silicon neuron circuit of the pulse type for modeling biological neurons, were designed in the semiconductor integrated circuit. Neuron circuiSt providing is formed by MOS switch for initializing the input terminal of the capacitor to the input current signal, a pulse signal and an amplifier stage for generating an output voltage signal. Synapse circuit that can convert the current signal output of the input voltage signal, using a bump circuit consisting of NMOS transistors and PMOS few. Configure a chain of neurons for verification of the neuron model that provides synaptic neurons and two are connected in series, were performed SPICE simulation. Result of simulation, it was confirmed the normal operation of the synaptic transmission characteristics of the signal generation of nerve cells.

0.18 μm CMOS Power Amplifier for Subgigahertz Short-Range Wireless Communications (Sub-GHz 근거리 무선통신을 위한 0.18 μm CMOS 전력증폭기)

  • Lim, Jeong-Taek;Choi, Han-Woong;Lee, Eun-Gyu;Choi, Sun-Kyu;Song, Jae-Hyeok;Kim, Sang-Hyo;Lee, Dongju;Kim, Wansik;Kim, Sosu;Seo, Mihui;Jung, Bang-Chul;Kim, Choul-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.834-841
    • /
    • 2018
  • A power amplifier for subgigahertz short-range wireless communication using $0.18-{\mu}m$ CMOS technology is presented. It is designed as a differential structure to form easily a virtual ground node, to increase output power, and to design a cascode structure to prevent breakdown. The transistor gate width was determined to maximize the output power and power-added efficiency(PAE), and the balun was optimized through electromagnetic simulation to minimize the loss caused by the matching network. This power amplifier had a gain of more than 49.5 dB, a saturation power of 26.7 dBm, a peak PAE of 20.7 % in the frequency range of 860 to 960 MHz, and a chip size of $2.14mm^2$.

A 2.7Gbps & 1.62Gbps Dual-Mode Clock and Data Recovery for DisplayPort in $0.18{\mu}m$ CMOS

  • Lee, Seung-Won;Kim, Tae-Ho;Lee, Suk-Won;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • This paper describes a clock and data recovery (CDR) circuit that supports dual data rates of 2.7Gbps and 1.62Gbps for DisplayPort standard. The proposed CDR has a dual mode voltage-controlled oscillator (VCO) that changes the operating frequency with a "Mode" switch control. The chip has been implemented using $0.18{\mu}m$ CMOS process. Measured results show the circuit exhibits peak-to-peak jitters of 37ps(@2.7Gbps) and 27ps(@1.62Gbps) in the recovered data. The power dissipation is 80mW at 2.7Gbps rate from a 1.8V supply.

A CMOS Phase-Locked Loop with 51-Phase Output Clock (51-위상 출력 클록을 가지는 CMOS 위상 고정 루프)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.408-414
    • /
    • 2014
  • This paper proposes a charge-pump phase-locked loop (PLL) with 51-phase output clock of a 125 MHz target frequency. The proposed PLL uses three voltage controlled oscillators (VCOs) to generate 51-phase clock and increase of maximum operating frequency. The 17 delay-cells consists of each VCO, and a resistor averaging scheme which reduces the phase mismatch among 51-phase clock combines three VCOs. The proposed PLL uses a 65 nm 1-poly 9-metal CMOS process with 1.0 V supply. The simulated peak-to-peak 지터 of output clock is 0.82 ps at an operating frequency of 125 MHz. The differential non-linearity (DNL) and integral non-linearity (INL) of the 51-phase output clock are -0.013/+0.012 LSB and -0.033/+0.041 LSB, respectively. The operating frequency range is 15 to 210 MHz. The area and power consumption of the implemented PLL are $580{\times}160{\mu}m^2$ and 3.48 mW, respectively.

A High Linear And Low Noise COMOS RF Front-End For 2.4GHz ZigBee Applications (지그비(ZigBee) 응용을 위한 고선형, 저잡음 2.4GHz CMOS RF 프론트-엔드(Front-End))

  • Lee, Seung-Min;Jung, Chun-Sik;Kim, Young-Jin;Baek, Dong-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.604-610
    • /
    • 2008
  • A 2.4 GHz CMOS RF front-end using for ZigBee application is described The front-end consists of a low noise amplifier and a down-mixer and uses a 2 MHz IF frequency. A common source with resistive feedback and an inductive degeneration are adopted for a low noise amplifier, and a 20 dB gain control step is digitally controlled. A passive mixer for low current consumption is employed. The RF front-end is implemented in 0.18 ${\mu}m$IP6M CMOS process. The measured performance is 4.44 dB NF and -6.5 dBm IIP3 while consuming 3.28 mA current from a 1.8 V supply.

  • PDF

Design of a 5.2GHz/2.4GHz Dual band CMOS Frequency Synthesizer for WLAN (WLAN을 위한 5.2GHz/2.4GHz 이중대역 주차수 합성기의 설계)

  • Kim, Kwang-Il;Lee, Sang-Cheol;Yoon, Kwang-Sub;Kim, Seok-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.134-141
    • /
    • 2007
  • This paper presents a frequency synthesizer(FS) for 5.2GHz/2.4GHz dual band wireless applications which is designed in a standard $0.18{\mu}m$ CMOS1P6M process. The 2.4GHz frequency is obtained from the 5.2GHz output frequency of Voltage Controlled Oscillator (VCO) by using the Switched Capacitor (SC) and the divider-by-2. Power dissipations of the proposed FS and VCO are 25mW and 3.6mW, respectively. The tuning range of VCO is 700MHz and the locking time is $4{\mu}s$. The simulated phase noise of PLL is -101.36dBc/Hz at 200kHz offset frequency from 5.0GHz with SCA circuit on.