• 제목/요약/키워드: ${\sigma}$-ideal

검색결과 53건 처리시간 0.024초

NOTES ON (σ, τ)-DERIVATIONS OF LIE IDEALS IN PRIME RINGS

  • Golbasi, Oznur;Oguz, Seda
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.441-448
    • /
    • 2012
  • Let R be a prime ring with center Z and characteristic different from two, U a nonzero Lie ideal of R such that $u^2{\in}U$ for all $u{\in}U$ and $d$ be a nonzero (${\sigma}$, ${\tau}$)-derivation of R. We prove the following results: (i) If $[d(u),u]_{{\sigma},{\tau}}$ = 0 or $[d(u),u]_{{\sigma},{\tau}}{\in}C_{{\sigma},{\tau}}$ for all $u{\in}U$, then $U{\subseteq}Z$. (ii) If $a{\in}R$ and $[d(u),a]_{{\sigma},{\tau}}$ = 0 for all $u{\in}U$, then $U{\subseteq}Z$ or $a{\in}Z$. (iii) If $d([u,v])={\pm}[u,v]_{{\sigma},{\tau}}$ for all $u{\in}U$, then $U{\subseteq}Z$.

WIJSMAN LACUNARY IDEAL INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS

  • Dundar, Erdinc;Akin, Nimet Pancaroglu
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.345-358
    • /
    • 2020
  • In this paper, we study the concepts of Wijsman lacunary invariant convergence, Wijsman lacunary invariant statistical convergence, Wijsman lacunary ${\mathcal{I}}_2$-invariant convergence (${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$), Wijsman lacunary ${\mathcal{I}}^*_2$-invariant convergence (${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$), Wijsman p-strongly lacunary invariant convergence ([W2Nσθ]p) of double sequence of sets and investigate the relationships among Wijsman lacunary invariant convergence, [W2Nσθ]p, ${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$ and ${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$. Also, we introduce the concepts of ${\mathcal{I}}^{{\sigma}{\theta}}_{W_2}$-Cauchy double sequence and ${\mathcal{I}}^{\ast}^{{\sigma}{\theta}}_{W_2}$-Cauchy double sequence of sets.

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권3호
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF

Sigma-Delta STAP의 시뮬레이션과 시험 결과 비교 (Comparison Between Simulation and Test Result of Sigma-Delta STAP)

  • 권보준
    • 한국전자파학회논문지
    • /
    • 제29권6호
    • /
    • pp.457-463
    • /
    • 2018
  • 이 논문에서는 실제 레이다를 이용하여 획득한 신호와 시뮬레이션으로 획득한 신호에 ${\Sigma}{\Delta}-STAP$ 알고리즘을 적용하여 비교하였다. 시험은 무반향 챔버에서 모의신호 발생장치를 이용한 표적 신호와 신호발생기를 이용한 클러터 신호를 레이다로 수신하여 수행하였다. 시뮬레이션은 시험과 동일한 레이다 파라미터에 이상적인 기저대역 신호 모델링을 통하여 수행하였다. 비교 결과, ${\Sigma}{\Delta}-STAP$ 처리된 거리-도플러 맵은 표적 신호의 형태나 잡음 수준이 시뮬레이션과 시험 결과가 거의 유사하였다. SINR 손실의 경우, 두 결과가 비슷한 양상을 보이나, 시뮬레이션 결과가 1~2 dB 가량 높은 값을 보였다. 이를 통하여 일반적인 레이다 신호 시뮬레이션을 수행하여도 실제 시험 결과와 유사한 ${\Sigma}{\Delta}-STAP$ 처리 결과를 얻을 수 있음을 확인하였다.

NILRADICALS OF SKEW POWER SERIES RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.507-519
    • /
    • 2004
  • For a ring endomorphism $\sigma$ of a ring R, J. Krempa called $\sigma$ a rigid endomorphism if a$\sigma$(a)=0 implies a=0 for a ${\in}$R. A ring R is called rigid if there exists a rigid endomorphism of R. In this paper, we extend the (J'-rigid property of a ring R to the upper nilradical $N_{r}$(R) of R. For an endomorphism R and the upper nilradical $N_{r}$(R) of a ring R, we introduce the condition (*): $N_{r}$(R) is a $\sigma$-ideal of R and a$\sigma$(a) ${\in}$ $N_{r}$(R) implies a ${\in}$ $N_{r}$(R) for a ${\in}$ R. We study characterizations of a ring R with an endomorphism $\sigma$ satisfying the condition (*), and we investigate their related properties. The connections between the upper nilradical of R and the upper nilradical of the skew power series ring R[[$\chi$;$\sigma$]] of R are also investigated.ated.

ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.381-401
    • /
    • 2016
  • According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and ${\sigma}:M{\rightarrow}End(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring R * M is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and ${\sigma}:M{\rightarrow}End(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring R * M has right Property (A).

LINDELÖFICATION OF FRAMES

  • Khang, Mee Kyung
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.87-100
    • /
    • 2007
  • We introduce a concept of countably strong inclusions ${\triangleleft}$ and that of ${\triangleleft}-{\sigma}$-ideals and prove that the subframe $S({\triangleleft})$ of the frame ${\sigma}IdL$ of ${\sigma}$-ideals is a Lindel$\ddot{o}$fication of a frame L. We also deal with conditions for which the converse holds. We show that any countably approximating regular $D({\aleph}_1)$ frame has the smallest countably strong inclusion and any frame which has the smallest $D({\aleph}_1)$ Lindel$\ddot{o}$fication is countably approximating regular $D({\aleph}_1)$.

  • PDF

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

LINDELÖFICATION OF BIFRAMES

  • Khang, Mee Kyoung
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.379-388
    • /
    • 2008
  • We introduce countably strong inclusions ${\triangleleft}=({\triangleleft}_1,\;{\triangleleft}_2)$ on a biframe $L=(L_0,\;L_1,\;L_2)$ and i-strongly regular ${\sigma}$-ideals (i =1, 2) and then using them, we construct biframe $Lindel{\ddot{o}}fication$ of L. Furthermore, we obtain a sufficient condition for which L has a unique countably strong inclusion.

  • PDF