LINDELÖFICATION OF BIFRAMES

MEE KYUNG KHANG

ABSTRACT. We introduce countably strong inclusions $\triangleleft = (\triangleleft_1, \triangleleft_2)$ on a biframe $L = (L_0, L_1, L_2)$ and *i*-strongly regular σ -ideals (i = 1, 2) and then using them, we construct biframe Lindelöfication of L. Furthermore, we obtain a sufficient condition for which L has a unique countably strong inclusion.

1. Introduction and preliminaries

This section is a collection of basic definitions and results on frames. For general notions and facts concerning frames, we refer to Johnstone[9] and Khang[10], and for compactifications to [1], [2], [3], [5].

1.1. Frames.

- DEFINITION 1.1. (1) A frame is a complete lattice L in which binary meet distributes over arbitrary join, that is, $x \land \bigvee S = \bigvee \{x \land s \in S\}$ for any x in L and any subset S of L.
- (2) A frame homomorphism is a map $h: L \to M$ between frames L and M preserving all finitary meets and binary joins.

We will denote the bottom element of a frame L by 0 or 0_L and the top element by e or e_L .

For any element a of a frame L, the map $a \wedge _: L \to L$ preserves arbitraty joins; hence it has a right adjont, which will be denoted by $a \to _: L \to L$. In particular, $a \to 0$ exists for any a in L and we write $a \to 0 = a^*$, called the pseudocomplement of a.

Received August 1, 2008. Revised August 6, 2008.

²⁰⁰⁰ Mathematics Subject Classification: Primary 06D22 ; Secondary ,54D35.

Key words and phrases: biframe, Lindelöf biframe, Lindelöfication, countably strong inclusion, σ -ideal, countably approximating biframe.

This paper was supported by Pai Chai University Research Grant at 2008.

- Definition 1.2. (1) Let L be a frame and a, b in L. We say that a is rather below b if there exists c in L such that $a \wedge c = 0$ and $b \lor c = e$, equivalently, $a^* \lor b = e$. In this case, we write $a \prec b$.
- (2) A frame L is said to be regular if for any a in L, $a = \bigvee \{b \in L | b \prec a\}$ a $\}$.

We note that $u \prec v$ in $\Omega(X)$ means $\overline{u} \subseteq v$, for a topological space $(X, \Omega(X))$ and it is clear that a topological space $(X, \Omega(X))$ is regular if and only if $\Omega(X)$ is a regular frame.

DEFINITION 1.3. ([7], [11]) Let L be a complete lattice and a, b in L. We say that a is way below (countably way below, resp.) b and write $a \ll b \ (a \ll_c b, \text{ resp.})$ if for any subset S of L, $b \leq \bigvee S$ implies $a \leq \bigvee C$ for some finite (countable, resp.) subset C of S.

- (1) Let A and B be subsets of a set X. Then $A \ll_c$ Example 1.4. B in the frame $\wp(X)$ of the power set of X if and only if there is a countable subset C of X with $A \subseteq C \subseteq B$.
- (2) In $\Omega(X)$ of a topological space $(X,\Omega(X))$, $u \ll_c v$ if there is a Lindelöf subset w of X with $u \subseteq w \subseteq v$. If X is locally Lindelöf, then the converse also holds.

PROPOSITION 1.5. Let L be a frame and a, b, x, y in L. Then

- (1) $0 \ll_c a$.
- (2) $a \ll_c b$ implies $a \leq b$.
- (2) $a \ll_c v$ implies $a \geq c$. (3) If $x \leq a \ll_c b \leq y$, then $x \ll_c y$. (4) If $a_n \ll_c b$ for all $n \in N$, then $\bigvee_{n \in N} a_n \ll_c b$.
- (5) If $a \ll b$, then $a \ll_c b$.

Definition 1.6. ([11]) A complete lattice L is said to be countably approximating if for any x in L, $x = \bigvee \{a \in L \mid a \ll_c x\}$.

The following definition is a natural generalization of compact frames.

DEFINITION 1.7. A frame L is said to be a Lindelöf frame if for any subset S of L with $\bigvee S = e$, there is a countable subset C of S with $\bigvee C = e$.

A 1-1 frame homomorphism is clearly codense and therefore the following is immedate:

Proposition 1.8. If $h: L \to M$ is a 1-1 frame homomorphism and M is a Lindelöf frame, then L is a Lindelöf frame.

DEFINITION 1.9. ([6]) A frame L is said to be a $D(\aleph_1)$ frame if for any a in L and any sequence $(b_n)_{n\in N}$ in L, $a\vee (\bigwedge_{n\in N}b_n)=\bigwedge_{n\in N}(a\vee b_n)$.

PROPOSITION 1.10. If $x_n \prec y$ for all n in N in a $D(\aleph_1)$ frame L, then $\bigvee_{n \in N} x_n \prec y$ in L.

1.2. Lindelöfication of a Frame.

Using a concept of countably strong inclusions, we have obtained a Lindelöfication of a frame L, i.e. a dense, onto frame homomorphism $h: L \to M$ such that M is a Lindelöf regular frame. ([10])

DEFINITION 1.11. A binary relation \triangleleft on a frame L is said to be a countably strong inclusion, if it satisfies:

- (1) if $x \le a \triangleleft b \le y$, then $x \triangleleft y$.
- (2) \triangleleft is closed under finite meets and countable joins.
- (3) $a \triangleleft b$ implies $a \prec b$.
- $(4) \triangleleft interpolates.$
- (5) $a \triangleleft b$ implies $b^* \triangleleft a^*$.
- (6) $a = \bigvee \{x \in L \mid x \triangleleft a\}$ for any a in L.

PROPOSITION 1.12. ([10]) If L is a Lindelöf regular $D(\aleph_1)$ frame, then \prec is a countably strong inclusion.

DEFINITION 1.13. A subset I of a frame L is said to be a σ -ideal if it is a countably directed lower set, equivalently, it is a lower set and closed under countable joins.

Let σIdL denote the set of all σ -ideals in L. Then σIdL is clearly closed under arbitrary intersections in the power set lattice $\wp(L)$ of L and therefore it is a complete lattice.

Using the fact that for
$$(I_{\lambda})_{{\lambda}\in{\Lambda}}\subseteq\sigma\mathrm{IdL}$$
, $\bigvee_{{\lambda}\in{\Lambda}}I_{\lambda}=\{\bigvee_{k\in{N}}x_k\mid (x_k)_{k\in{N}}\text{ is a sequence in }\bigcup_{{\lambda}\in{\Lambda}}I_{\lambda}\}$ in $\sigma\mathrm{IdL}$, one has:

Proposition 1.14. σIdL is a Lindelöf frame.

DEFINITION 1.15. Let \triangleleft be a countably strong inclusion on a frame L. Then a σ -ideal I is said to be a \triangleleft - σ -ideal if for any a in I, there is b in I such that $a \triangleleft b$.

Let $S(\triangleleft)$ denote the subframe of σIdL determined by $\triangleleft -\sigma$ -ideals, then the join map $j_0: S(\triangleleft) \to L$ is indeed a Lindelöfication of L ([10]).

2. Lindelöfication of Biframes

In order to set up a frame version for bitopological spaces, a concept of biframes was introduced ([4]).

In this chapter, we deal with Lindelöfications of biframes.

- DEFINITION 2.1. (1) A biframe is a triple $L = (L_0, L_1, L_2)$ where L_1 and L_2 are subframes of a frame L_0 such that L_0 is generated by $L_1 \cup L_2$.
- (2) Let $L = (L_0, L_1, L_2)$ and $M = (M_0, M_1, M_2)$ be biframes. A map $h: L \to M$ is said to be a biframe homomorphism, if $h: L_0 \to M_0$ is a frame homomorphism and satisfies $h(L_i) \subseteq M_i$ for i = 1, 2.
- EXAMPLE 2.2. (1) Let $L_0 = \Omega(R)$ the open set lattice of the real line R, L_1 all open downsets and L_2 all open upsets in R. Then $L = (L_0, L_1, L_2)$ is a biframe.
- (2) If we let $L_0 = L_1 = L_2 = L$ for a frame L, then $L = (L_0, L_1, L_2)$ is a biframe.

Definition 2.3. Let $L = (L_0, L_1, L_2)$ be a biframe.

- (1) L is said to be a Lindelöf biframe if L_0 is a Lindelöf frame.
- (2) Let i, k = 1, 2 and $i \neq k$,
 - a) $x \prec_i y$ if $x, y \in L_i$ and there is c in L_k with $x \wedge c = 0$ and $y \vee c = e$.
 - b) L is said to be regular if for any x in L_i , $x = \bigvee \{y | y \prec_i x\}$.
 - c) For any $x \in L_i$ (i = 1, 2), let $x^{\bullet} = \bigvee \{z \in L_k | z \land x = 0\}$.
- (3) L is said to be $D(\aleph_1)$ if L_0 is a $D(\aleph_1)$ frame.

In the above example (1), $u \prec_i v$ if and only if $u \subseteq v$ such that one of the following holds :

- i) $u \neq v$,
- ii) $u = v = \emptyset$,
- iii) u=v=R.

REMARK. Let L be a biframe and $a, b \in L_0$. For any i = 1, 2,

- (1) $a \prec_i b$ implies $a \leq b$.
- (2) $a \prec_i b$ if and only if $a^{\bullet} \lor b = e$.

Definition 2.4. A biframe homomorphism $h: L \to M$ is said to be:

- (1) dense if $h: L_0 \to M_0$ is dense.
- (2) onto if $h|_{L_1}$ and $h|_{L_2}$ are both onto.

DEFINITION 2.5. A Lindelöfication of a biframe L is a dense, onto biframe homomorphism $h: M \to L$ such that M is a Lindelöf regular biframe.

We now introduce a concept of countably strong inclusion on a biframe.

DEFINITION 2.6. Let $L = (L_0, L_1, L_2)$ be a biframe and $\triangleleft_i \subseteq L_i \times L_i$, for i = 1, 2. Then $\triangleleft = (\triangleleft_1, \triangleleft_2)$ is said to be a countably strong inclusion on L if \triangleleft satisfies the following, where i, k = 1, 2 and $i \neq k$.

- 1) If $x \leq a \triangleleft_i b \leq y$, then $x \triangleleft_i y$.
- 2) \triangleleft_i is closed under finite meets and countable joins.
- 3) If $a \triangleleft_i b$, then $a \prec_i b$.
- 4) \triangleleft_i interpolates.
- 5) If $a \triangleleft_i b$, then there are u, v in L_k such that $u \triangleleft_k v$, $a \wedge v = 0$ and $b \vee u = e$.
- 6) For any $a \in L_i$, $a = \bigvee \{x \in L_i | x \triangleleft_i a\}$.
- REMARK. (1) The condition 5) in the above definition may be replaced by the following: $a \lhd_i b$ implies $b^{\bullet} \lhd_k a^{\bullet}$. Indeed, suppose $a \lhd_i b$, then there are u, v in L_k such that $u \lhd_k v$, $a \land v = 0$ and $b \lor u = e$. Thus $v \le a^{\bullet}$ and $b^{\bullet} = b^{\bullet} \land e = b^{\bullet} \land (b \lor u) = b^{\bullet} \land u$; hence $b^{\bullet} \le u$. Therefore $b^{\bullet} \le u \lhd_k v \le a^{\bullet}$, so that $b^{\bullet} \lhd_k a^{\bullet}$. Conversely, suppose $a \lhd_i b$ then by 4), there is x in L_i such that $a \lhd_i x \lhd_i b$. Thus $x^{\bullet} \lhd_k a^{\bullet}$, so that $x^{\bullet} \lhd_k a^{\bullet}$, $a \land a^{\bullet} = 0$. Moreover $x^{\bullet} \lor b = e$, for $x \lhd_i b$ implies $x \prec_i b$.
- (2) By the exactly same arguments as those in Proposition 1.12, $\prec = (\prec_1, \prec_2)$ in a Lindelöf regular $D(\aleph_1)$ biframe L is a countably strong inclusion on L.

Proof for the following lemma is straightforward and hence we omit it.

LEMMA 2.7. Let $h: N \to L$ be an onto biframe homomorphism. If $\triangleleft = (\triangleleft_1, \triangleleft_2)$ is a countably strong inclusion on N, then $\hat{\triangleleft} = (h(\triangleleft_1), h(\triangleleft_2))$ is a countably strong inclusion on L.

We now have the following by the above Lemma and Remark.

COROLLARY 2.8. If a biframe L has a $D(\aleph_1)$ Lindelöfication, then it has a countably strong inclusion.

For a biframe $L = (L_0, L_1, L_2)$, let $j_i : L_i \to L_0$ be the inclusion homomorphism and let $\tilde{j}_i : \sigma IdL_i \to \sigma IdL_0$ be the frame homomorphism induced by j_i between the frames of σ -ideals of L_i and L_0 respectively (i = 1, 2). Then for any $J \in \sigma IdL_i$, $\tilde{j}_i(J) = \downarrow J$. Moreover, $\tilde{j}_i(\sigma IdL_i) = \{ \downarrow J | J \in \sigma IdL_i \}$ is a subframe of σIdL_0 , which will be denoted by σId_bL_i .

DEFINITION 2.9. Let $\triangleleft = (\triangleleft_1, \triangleleft_2)$ be a countably strong inclusion on a biframe $L = (L_0, L_1, L_2)$ and i = 1, 2. A σ -ideal J on L_0 is said to be i-strongly regular if $J \in \sigma Id_bL_i$ and for any x in $J \cap L_i$, there is y in $J \cap L_i$ with $x \triangleleft_i y$.

Let \Re_i denote the set of all *i*-strongly regular σ -ideals in a biframe $L = (L_0, L_1, L_2)$ (i = 1, 2).

Using these notions, we now have the following immediately:

Proposition 2.10. \Re_i is a subframe of σIdL_0 .

Now let \Re_0 be the subframe of σIdL_0 generated by $\Re_1 \cup \Re_2$, then $\Re = (\Re_0, \Re_1, \Re_2)$ is a biframe.

Since σIdL_0 is a Lindelöf frame, so is \Re_0 . Thus \Re is a Lindelöf biframe.

Since $j: \sigma \mathrm{IdL}_0 \to \mathrm{L}_0$ defined by $j(\mathrm{J}) = \bigvee \mathrm{J}$ is dense, the restriction $j_0: \Re_0 \to \mathrm{L}_0$ of j to \Re_0 is also dense, so that the biframe homomorphism $j_0: \Re \to \mathrm{L}$ is dense.

Consider $\gamma_i: L_i \to \Re_i$ defined by $\gamma_i(a) = \downarrow \{x \in L_i | x \triangleleft_i a\}$. Then γ_i is well-defined, because $\{x \in L_i | x \triangleleft_i a\}$ is a \triangleleft_i - σ -ideal in L by the definition of countably strong inclutions. Furthermore, for any a in L_i , $a = \bigvee \gamma_i(a) = j_0(\gamma_i(a))$; therefore j_0 is onto.

LEMMA 2.11. If $a \triangleleft_i b$, then $\gamma_i(a) \prec_i \gamma_i(b)$ (i = 1, 2).

Proof. Since \triangleleft_i interpolates, there is c in L_i such that $a \triangleleft_i c \triangleleft_i b$. Since $a \triangleleft_i c$ there are u,v in L_k such that $v \triangleleft_k u$, $a \wedge u = 0$ and $c \vee v = e$. For any z in $\gamma_i(a) \wedge \gamma_k(u) = \gamma_i(a) \cap \gamma_k(u)$, $z \triangleleft_i a$ and $z \triangleleft_k u$ and hence $z \leq a \wedge u = 0$. Thus $\gamma_i(a) \wedge \gamma_k(u) = \{0\}$. Since $c \vee v = e \in \gamma_i(b) \cap \gamma_k(u)$, $\gamma_i(b) \wedge \gamma_k(u) = L_0$. So $\gamma_i(a) \prec_i \gamma_i(b)$.

LEMMA 2.12. For any J in \Re_i , $J = \bigvee_{a \in J \cap L_i} \gamma_i(a)$, for i = 1, 2.

Proof. Since $J \in \sigma Id_bL_i$, $J = \downarrow (J \cap L_i)$ and therefore $x \in J$ if and only if there are a,b in $J \cap L_i$, such that $x \leq a \triangleleft_i b$. Thus we have $J = \bigvee_{a \in J \cap L_i} \gamma_i(a)$.

Proposition 2.13. \Re is regular.

Proof. For any J in \Re_i and any a in $J \cap L_i$, there is b in $J \cap L_i$ with $a \triangleleft_i b$, so that $\gamma_i(a) \prec \gamma_i(b) \leq J$. Hence $J = \bigvee_{a \in J \cap L_i} \gamma_i(a) \leq \bigvee \{I \in \Re_i | I \prec_i J\} \leq J$. Thus $J = \bigvee \{I \in \Re_i | I \prec_i J\}$.

Collecting the above results, we have:

THEOREM 2.14. If \triangleleft is a countably strong inclusion on a biframe L, then $j_0: \Re \to L$ is a Lindelöfication of L.

Let $CS_b(L)$ be the set of all countably strong inclusions on a biframe L. Then $(CS_b(L), \subseteq)$ is a poset.

DEFINITION 2.15. Let $f: M \to L$ and $g: N \to L$ be Lindelöfications of a biframe L. If there is a biframe homomorphism $h: M \to N$ with $g \circ h = f$, then we say that f is smaller than g and write $f \leq g$.

Clearly, \leq is a preoder on the class of Lindelöfications of a biframe L and the relation $\leq \cap \leq^{\text{op}}$ is an equivalence relation on the class and let $\text{Lind}_b(L)$ be the set of all equivalence classes of Lindelöfications of a biframe L. Then $(\text{Lind}_b(L), \leq)$ is a poset, where $[f] \leq [g]$ in $\text{Lind}_b(L)$ means $f \leq g$.

Define $\varphi : \operatorname{Lind}^*(L) \to \operatorname{CS}_b(L)$ by $\varphi(h : M \to L) = (h(\prec_1), h(\prec_2))$ and $\psi : \operatorname{CS}_b(L) \to \operatorname{Lind}(L)$ by $\psi(\triangleleft) = (j_0 : \Re \to L)$, where $\operatorname{Lind}^*(L)$ denotes the set of all $D(\aleph_1)$ Lindelöfications of a biframe L. Then φ and ψ are isotones. Using the exactly same arguments as those in section 2 in [10], we have the following :

THEOREM 2.16. 1) Suppose that \triangleleft is a countably strong inclusion on a biframe L such that \Re is $D(\aleph_1)$. Then $\varphi(\psi(\triangleleft)) = \triangleleft$.

2) For a $D(\aleph_1)$ Lindelöfication $h: M \to L$ of a biframe $L, \psi(\varphi(h)) \cong M$

We will introduce stably countably approximating frames and we will then find smallest countably strong inclusion. DEFINITION 2.17. A frame M is said to be stably countably approximating if M is countably approximating and \ll_c is closed under finite meets in M.

- EXAMPLE 2.18. (1) If M is Lindelöf regular $D(\aleph_1)$, then M is stably countably approximating, since \ll_c and \prec are same in a Lindelöf regular $D(\aleph_1)$ frame.([10])
- (2) It is known that $I \ll_c J$ in σIdL if and only if $I \subseteq \downarrow a \subseteq J$, for some a in L ([11]). Thus σIdL is stably countably approximating.

LEMMA 2.19. Let $L = (L_0, L_1, L_2)$ be a regular $D(\aleph_1)$ biframe. Then each L_i is stably countably approximating and \ll_{ci} satisfies the condition 5) in Definition 2.6 of countably strong inclusion if and only if (\ll_{c1}, \ll_{c2}) is a countably strong inclusion on L.

Proof. (\Leftarrow) By the condition 2), 5) and 6) of countably strong inclusion, it is trivial.

 (\Rightarrow)

- 1) It follows from (3) in Proposition 1.5.
- 2) Since each L_i is stably countably approximating, each \ll_{ci} is closed under finite meets and by (4) in Proposition 1.5, each \ll_{ci} is closed under countably joins.
- 3) Since L is regular $D(\aleph_1)$, $x \ll_{ci} y$ implies $x \prec_i y$.
- 4) Since each L_i is countably approximating, each \ll_{ci} interpolates.
- 5) It is trivial by the assumption.
- 6) If follows from the fact that each L_i is countably approximating.

PROPOSITION 2.20. If L is a regular $D(\aleph_1)$ biframe such that each L_i is stably countably approximating and \ll_{ci} satisfies the condition 5) in Definition 2.6 of countably strong inclusion, then (\ll_{c1}, \ll_{c2}) is the smallest countably strong inclusion on L.

Proof. Let $(\triangleleft_1, \triangleleft_2)$ be any countably strong inclusion on L. If $x \ll_{ci} y$, then $x \ll_{ci} y = \bigvee \{z \in \mathcal{L}_i | z \triangleleft_i y\}$. Thus there is a countable subset $\{z_n | n \in N\}$ of \mathcal{L}_i such that for any $n \in N$, $z_n \triangleleft_i y$ and $x \leq \bigvee_{n \in N} z_n$ and hence $x \leq \bigvee_{n \in N} z_n \triangleleft_i y$, so $x \triangleleft_i y$. In all, $(\ll_{c1}, \ll_{c2}) \subseteq (\triangleleft_1, \triangleleft_2)$.

LEMMA 2.21. Let L be a regular $D(\aleph_1)$ biframe in which each L_i is countably approximating and $a \prec_i b$ implies that $a \ll_{ci} b$ whenever a < e. Then (\prec_1, \prec_2) is a countably strong inclusion on L.

Proof. Conditions 1), 2), 3) are trivial.

- 4) We note that for a < e, $a \prec_i b$ if and only if $a \ll_{ci} b$ since L is regular $D(\aleph_1)$. Since L_i is countably approximating, there is z in L_i such that $a \ll_{ci} z \ll_{ci} b$ and hence $a \prec_i z \prec_i b$. For a = e, there is nothing to prove.
- 5) Suppose that $a \prec_i b$. Then by 4), there is c in L_i such that $a \prec_i c \prec_i b$. So there are s, t in L_k such that $a \wedge s = 0$, $c \vee s = e$, $c \wedge t = 0$ and $b \vee t = e$. Thus $a \wedge s = 0$, $t \prec_k s$ and $b \vee t = e$.
- 6) It follows from the regularity of L_i .

THEOREM 2.22. Let L be a regular $D(\aleph_1)$ biframe in which each L_i is countably approximating and $a \prec_i b$ implies that $a \ll_{ci} b$ whenever a < e. Then L has a unique countably strong inclusion.

Proof. By Lemma 2.21, (\prec_1, \prec_2) is a countably strong inclusion on L. Let (\lhd_1, \lhd_2) be any countably strong inclusion on L. Then $(\lhd_1, \lhd_2) \subseteq (\prec_1, \prec_2)$ by the condition 3) of countably strong inclusion. Note that for a < e, $a \prec_i b$ if and only if $a \ll_{ci} b$. Thus by Proposition 2.20, (\ll_{c1}, \ll_{c2}) is the smallest countably strong inclusion, that is, (\prec_1, \prec_2) is the smallest countably strong inclusion. Hence $(\lhd_1, \lhd_2) = (\prec_1, \prec_2)$. \square

References

- B. Banaschewski, Compactification of frames, Math. Nach., 149, 1990, pp. 105-116.
- [2] B. Banaschewski, Frames and compactifications, Extension theory of topological structures and its applications, Deutscher Verlag der Wissenschaften, Berlin, 1969, pp. 29-33.
- [3] B. Banaschewski, and G. C. L. Brümmer, *Stably continuous frames*, Math. Proc. Camb. Phil. Soc., **104**, 1988, no. 1, pp. 7-19.
- [4] B. Banaschewski, and G. C. L. Brümmer, K. A. Hardie, Biframes and bispaces, Quaestiones Math., 6, 1983, pp. 13-25.
- [5] B. Banaschewski, and C. J. Mulvey, Stone-Čech compactification of locales I, Houston J. Math., 6, 1980, pp. 301-312.
- [6] X. Chen, Closed homomorphism, Doctoral Dissertation, McMaster University, Hamilton, 1991.
- [7] G. Gierz, K. H. Hoffman, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin, 1980.
- [8] J. R. Isbell, Atomless parts of locales, Math. Scand., 31, 1972, pp. 5-32.
- [9] P. T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982.

- [10] M. K. Khang, *Lindelöfication of Frames*, Kangweon-Kyungki Math. Jour.,15(2007), No. 2, pp. 87-100.
- [11] S. O. Lee, On countably approximating lattices, J. Korean Math, Soc., 25, no. 1, 1988, pp. 11-23.

Department of Applied Mathematics, Paichai University Daejeon 302-735, Korea E-mail: mkkhang@pcu.ac.kr