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NOTES ON (σ, τ)-DERIVATIONS OF LIE IDEALS

IN PRIME RINGS

Öznur Gölbaşı and Seda Oğuz

Abstract. Let R be a prime ring with center Z and characteristic differ-
ent from two, U a nonzero Lie ideal of R such that u2 ∈ U for all u ∈ U

and d be a nonzero (σ, τ)-derivation of R. We prove the following results:
(i) If [d(u), u]σ,τ = 0 or [d(u), u]σ,τ ∈ Cσ,τ for all u ∈ U, then U ⊆ Z. (ii)
If a ∈ R and [d(u), a]σ,τ = 0 for all u ∈ U, then U ⊆ Z or a ∈ Z. (iii) If
d([u, v]) = ±[u, v]σ,τ for all u ∈ U, then U ⊆ Z.

1. Introduction

Let R denote an assosiative ring with center Z. Recall that a ring R is prime
if xRy = {0} implies x = 0 or y = 0. For any x, y ∈ R, the symbol [x, y] stands
for the commutator xy − yx and the symbol xoy denotes the anticommutator
xy+ yx. An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U

for all u ∈ U, r ∈ R. An additive mapping d : R → R is called a derivation if
d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. For a fixed a ∈ R, the mapping
Ia : R → R given by Ia(x) = [a, x] is a derivation which is said to be an inner
derivation. Let S be a nonempty subset of R. A mapping F from R to R is
called centralizing on S if [F (x), x] ∈ Z for all x ∈ S and is called commuting on
S if [F (x), x] = 0 for all x ∈ S. In [15], Posner showed that if a prime ring has
a nontrivial derivation which is centralizing on the entire ring, then the ring
must be commutative (Posner’s second theorem). In [13] and [16] the same
results is proved for a prime ring with a nontrivial centralizing automorphism.
A number of authors have generalized these results by considering mappings
which are only assumed to be centralizing on an appropriate ideal of the ring.

In [3], Awtar considered centralizing derivations on Lie and Jordan ideals.
For prime rings, Awtar showed that a nontrivial derivation which is centralizing
on Lie ideal implies that the ideal is contained in the center if the ring is not
of characteristic two or three. In [12], Lee and Lee obtained the result while
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removing the restriction of characteristic not three. This result is extended in
[14] where it is shown that if R is any prime ring with a nontrivial centralizing
automorphism on a Lie ideal U, then U is contained in the center of R. Bell and
Martindale have proved similar results assuming that the ring is semiprime in
[6].

Inspired by the definition derivation, the notion of (σ, τ)-derivation was ex-
tended as follow: Let σ and τ be any two automorphisims of R. An additive
mapping d : R → R is called a (σ, τ)-derivation if d(xy) = d(x)σ(y) + τ(x)d(y)
holds for all x, y ∈ R. Of course a (1, 1)-derivation where 1 is the identity
map on R is a derivation. For any x, y ∈ R, we set [x, y]σ,τ = xσ(y) − τ(y)x.
We set Cσ,τ = {c ∈ R | cσ(x) = τ(x)c for all x ∈ R} and call this set the
(σ, τ)-center of R. In particular C1,1 = Z. It can be given (σ, τ)-centralizing
(resp. (σ, τ)-commuting) on R by the similarly definition centralizing (resp.
commuting).

In attempt to generalize Posner’s second theorem Ashraf and Rehman proved
that if R is a 2-torsion free prime ring and d is a nonzero (σ, τ)-derivation of R
such that the map x → [d(x), x]σ,τ is (σ, τ)-commuting on R, then R is com-
mutative in [2]. In [4], Aydin showed that the conclusion of the above theorem
holds for a (σ, τ)-derivation d the mapping x → d(x) is (σ, τ)-centralizing on
R. In the present paper, our objective is to generalize this result for a nonzero
Lie ideal U of R such that u2 ∈ U for all u ∈ U.

A famous result due to Herstein [10] satates that if R is a prime ring of
characteristic not 2 which admits a nonzero derivation d such that [d(x), a] = 0
for all x ∈ R, then a ∈ Z. This result proved for a nonzero Lie ideal of R in [7].
Aydin and Kaya showed that d be a nonzero (σ, τ)-derivation and U an ideal of
a prime ring R such that [d(u), a]σ,τ = 0 for all u ∈ U, then a ∈ Z in [5]. Güven
proved that α, β ∈ AutR, I 6= (0) be an ideal, d be a nonzero (σ, τ)-derivation
of R such that dσ = σd, dτ = τd and [a, d(I)]α,β = 0 then a ∈ Cα,β or R is a
commutative ring in [9]. In this paper, we shall prove Herstein’s theorem for a
nonzero Lie ideal U of R such that u2 ∈ U for all u ∈ U.

On the other hand, in [8], Daif and Bell showed that if a semiprime ring R

has a derivation d satisfiying the following condition, then I is a central ideal;
there exists a nonzero ideal I of R such that

d([x, y]) = [x, y] or d([x, y]) = −[x, y] for all x, y ∈ I.

In [1], Argaç proved this result for semiprime rings with derivation. Our second
aim is to show this result for a nonzero Lie ideal of R such that u2 ∈ U for all
u ∈ U and a (σ, τ)-derivation d.

2. Preliminaries

Throughout the present paper, we shall make some extensive use of the basic
commutator identities:

[x, yz] = y[x, z] + [x, y]z,
[xy, z] = [x, z]y + x[y, z],
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[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy,
[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z), and
[x, [y, z]]σ,τ + [[x, z]σ,τ , y]σ,τ − [[x, y]σ,τ , z]σ,τ = 0.

Moreover, we shall require the following lemmas.

Lemma 1 ([10, Lemma 1]). Let R be a semiprime, 2-torsion free ring and U

a nonzero Lie ideal of R. Suppose that [U,U ] ⊂ Z, then U ⊆ Z.

Lemma 2 ([7, Lemma 4]). Let R be a prime ring with characteristic not two,

a, b ∈ R. If U is a noncentral Lie ideal of R and aUb = 0, then a = 0 or b = 0.

Lemma 3 ([7, Theorem 1]). Let R be a prime ring with characteristic not two

and U a nonzero Lie ideal of R. If d is a nonzero derivation of R such that

d2(U) = 0, then U ⊆ Z.

Lemma 4 ([12, Lemma 1.1]). Let R be a prime ring with characteristic not

two and U a nonzero Lie ideal of R. If d is a nonzero (σ, τ)-derivation of R

such that d(U) = 0, then U ⊆ Z.

Lemma 5 ([11, Lemma 1.2]). Let R be a prime ring with characteristic not

two, U a nonzero Lie ideal of R and a ∈ R. If d is a nonzero (σ, τ)-derivation
of R such that ad(U) = 0 (d(U)a = 0), then U ⊆ Z or a = 0.

Lemma 6 ([11, Lemma 1.4]). Let R be a prime ring with characteristic not

two and a ∈ R. If [U, a] ∈ Z, then a ∈ Z or U ⊆ Z.

3. Results

The following theorem gives a generalization of Posner’s well known result
[15, Theorem 2] and a extension of [2, Theorem 1].

Theorem 1. Let R be a 2-torsion free prime ring and U a nonzero Lie ideal

of R such that u2 ∈ U for all u ∈ U. If R admits a nonzero (σ, τ)-derivation
such that [d(u), u]σ,τ = 0 for all u ∈ U, then U ⊆ Z.

Proof. By the hypothesis, we have

(3.1) [d(u), u]σ,τ = 0 for all u ∈ U.

A linearization of (3.1) yields that

(3.2) [d(u), v]σ,τ + [d(v), u]σ,τ = 0 for all u, v ∈ U.

Notice that uv + vu = (u+ v)
2
− u2 − v2 for all u, v ∈ U. Since u2 ∈ U for all

u ∈ U, uv + vu ∈ U. Also uv − vu ∈ U for all u, v ∈ U. Hence, we get 2uv ∈ U

for all u, v ∈ U. Replacing v by 2vu in this equation and using the hypothesis
and (3.2), we obtain that

2[τ(v), τ(u)]d (u) = 0 for all u, v ∈ U.

Since R is a 2-torsion free ring and τ is an automorphism of R, the above
relation yields that

τ([v, u])d (u) = 0 for all u, v ∈ U.
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Taking 2vw,w ∈ U instead of v and using R is a 2-torsion free ring, we get

τ([v, u])τ (w) d (u) = 0 for all u, v, w ∈ U.

Since τ is an automorphism of R, we see that

[v, u]Uτ−1 (d (u)) = 0 for all u, v ∈ U.

By Lemma 2, we get either [v, u] = 0 or d (u) = 0 for each u ∈ U. Let K = {u ∈
U | d(u) = 0} and L = {u ∈ U | [v, u] = 0 for all v ∈ U} of additive subgroups
of U. Morever, U is the set-theoretic union of K and L. But a group can not
be the set-theoretic union of two proper subgroups, hence K = U or L = U. In
the former case, we get U ⊆ Z by Lemma 4. In the latter case, [U,U ] = (0) .
That is U ⊆ Z by Lemma 1. This completes the proof. �

Theorem 2. Let R be a 2-torsion free prime ring and U a nonzero Lie ideal

of R such that u2 ∈ U for all u ∈ U. If R admits a nonzero (σ, τ)-derivation
such that [d(u), u]σ,τ ⊂ Cσ,τ for all u ∈ U, then U ⊆ Z.

Proof. Linearizing [d(u), u]σ,τ ∈ Cσ,τ , we get

(3.3) [d(u), v]σ,τ + [d(v), u]σ,τ ∈ Cσ,τ for all u, v ∈ U.

On the other hand, we have

[d(u), [v, u]]σ,τ = [[d(u), v]σ,τ , u]σ,τ − [[d(u), u]σ,τ , v]σ,τ

and so

(3.4) [d(u), [v, u]]σ,τ = [[d(u), v]σ,τ , u]σ,τ for all u, v ∈ U.

Replacing v by [v, u] in (3.3), we see that

[d(u), [v, u]]σ,τ + [d([v, u]), u]σ,τ ∈ Cσ,τ for all u, v ∈ U.

Since d([v, u]) = [d(v), u]σ,τ − [d(u), v]σ,τ , we can write the last equation

[d(u), [v, u]]σ,τ + [[d(v), u]σ,τ , u]σ,τ − [[d(u), v]σ,τ , u]σ,τ ∈ Cσ,τ for all u, v ∈ U.

Using (3.4) and this in the last equation, we obtain that

(3.5) [[d(v), u]σ,τ , u]σ,τ ∈ Cσ,τ for all u, v ∈ U.

Now, commutting (3.3) with u, we have

[[d(u), v]σ,τ , u]σ,τ + [[d(v), u]σ,τ , u]σ,τ = 0.

Using (3.5) in this equation, we arrive at

(3.6) [[d(u), v]σ,τ , u]σ,τ ∈ Cσ,τ for all u, v ∈ U.

Again using (3.6) in (3.4), we obtain

(3.7) [d(u), [v, u]]σ,τ ∈ Cσ,τ for all u, v ∈ U.

Replacing v by 2vu in (3.7) and using this, we find that

2[d(u), [v, u]u]σ,τ

= 2τ([v, u])[d(u), u]σ,τ + 2[d(u), [v, u]]σ,τσ(u) ∈ Cσ,τ for all u, v ∈ U.
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Commutting this term with u, we have

2τ([v, u])[[d(u), u]σ,τ , u]σ,τ + 2[τ([v, u]), τ(u)][d(u), u]σ,τ

+ 2[[d(u), [v, u]]σ,τ , u]σ,τσ(u) + 2[d(u), [v, u]]σ,τ [σ(u), σ(u)] = 0

and so

(3.8) τ([v, u], u])[d(u), u]σ,τ = 0 for all u, v ∈ U.

Multipliying (3.8) with σ(w), we get

τ([v, u], u])[d(u), u]σ,τσ(w) = 0 for all u, v, w ∈ U.

By the hyphothesis, we have [d(u), u]σ,τσ(w) = τ(w)[d(u), u]σ,τ for all u,w ∈
U. Appliying this in the last equation, we obtain that

τ([v, u], u])τ(w)[d(u), u]σ,τ = 0 for all u, v, w ∈ U.

Since τ is an automorphism of R, we get

[[v, u], u]Uτ−1([d(u), u]σ,τ ) = 0 for all u, v, w ∈ U.

By the application of Lemma 2 yields that [[v, u] , u] = 0 or [d(u), u]σ,τ = 0
for each u ∈ U. If [d(u), u]σ,τ = 0 for all u ∈ U , then U ⊆ Z by Theorem 1. Now
let [[v, u] , u] = 0 for all u, v ∈ U. We define Iu(x) = [x, u] an inner derivation
determined by u. Hence we have I2u(U) = (0), and so U ⊆ Z by Lemma 3. �

Theorem 3. Let R be a 2-torsion free prime ring and U a nonzero Lie ideal

of R such that u2 ∈ U for all u ∈ U and a ∈ R. If R admits a nonzero

(σ, τ)-derivation such that [d(u), a]σ,τ = 0 for all u ∈ U, then a ∈ Z or U ⊆ Z.

Proof. Let u, v ∈ U. Then

0 = [d(2uv), a]σ,τ = 2[d(u)σ(v) + τ(u)d(v), a]σ,τ

= 2[d(u), a]σ,τσ(v) + 2d(u)[σ(v), σ(a)] + 2τ(u)[d(v), a]σ,τ + 2[τ(u), τ(a)]

and so

(3.9) d(u)σ([v, a]) = τ([a, u])d(v) for all u, v ∈ U.

Replacing v by 2vw in (3.9) and using (3.9), we arrive at

(3.10) d(u)σ(v)σ([w, a]) = τ([a, u])τ(v)d(w) for all u, v, w ∈ U.

Let in (3.10) v be [v, a] and again using (3.9) we have

d(u)σ([v, a])σ([w, a]) = τ([a, u])τ([v, a])d(w),

τ([a, u])d(v)σ([w, a]) = τ([a, u])τ([v, a])d(w)

and so

τ([a, u])τ([a, v])d(w)) = τ([a, u])τ([v, a])d(w) for all u, v, w ∈ U.

That is 2τ([a, u])τ([a, v])d(w)) = 0. Since R is 2-torsion free, we get

τ([a, u][a, v])d(w) = 0 for all u, v, w ∈ U.
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By Lemma 5, we arrive at

[a, u][a, v] = 0 for all u, v ∈ U.

Again replacing v by 2vu in the last equation and using this, we have

[a, u]U [a, w] = 0 for all u,w ∈ U.

By the application of Lemma 2 yields that [a, u] = 0 for all u ∈ U, and so,
a ∈ Z or U ⊆ Z by Lemma 6. This completes the proof. �

Theorem 4. Let R be a 2-torsion free prime ring and U a nonzero Lie ideal

of R such that u2 ∈ U for all u ∈ U. If R admits a nonzero (σ, τ)-derivation d

such that d ([u, v]) = 0 for all u, v ∈ U, then U ⊆ Z.

Proof. We assume that

(3.11) d ([u, v]) = 0 for all u, v ∈ U.

Replacing v by 2vu in (3.11) and using R is 2-torsion free, we get

d ([u, v])σ (u) + τ ([u, v]) d (u) = 0 for all u, v ∈ U.

Appliying (3.11), we have

(3.12) τ ([u, v]) d (u) = 0 for all u, v ∈ U.

Writing 2vw in (3.12) instead of v and using this, we have

2 (τ ([u, v]) τ (w) d (u) + τ (v) τ ([u,w]) d (u)) = 0

and so
τ ([u, v]) τ (w) d (u) = 0 for all u, v, w ∈ U

That is
[u, v]Uτ−1 (d (u)) = 0 for all u, v ∈ U.

By the application of Lemma 2 yields that [u, v] = 0 or d (u) = 0 for each
u ∈ U. Using the same arguments in the proof of Theorem 1, we get the
required result. �

Theorem 5. Let R be a 2-torsion free prime ring and U a nonzero Lie ideal

of R such that u2 ∈ U for all u ∈ U. If R admits a nonzero (σ, τ)-derivation d

such that d ([u, v]) = ±[u, v]σ,τ for all u, v ∈ U, then U ⊆ Z.

Proof. By the hypothesis, we get

(3.13) d ([u, v]) = [u, v]σ,τ for all u, v ∈ U.

Substituting 2vu for v in (3.13) and using R is 2-torsion free, we arrive at

d ([u, v])σ (u) + τ ([u, v]) d (u) = τ (v) [u, u]σ,τ + [u, v]σ,τσ (u) for all u, v ∈ U.

Using the equation (3.13), we have

(3.14) τ ([u, v]) d (u) = τ (v) [u, u]σ,τ for all u, v ∈ U.

Replacing v by 2wv,w ∈ U in (3.14), we find that

τ ([u,w]) τ (v) d (u) + τ (w) τ [u, v]d (u) = τ (w) τ (v) [u, u]σ,τ for all u, v, w ∈ U.
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Using (3.14), we see that

τ ([u,w]) τ (v) d (u) = 0 for all u, v, w ∈ U

and so,

[u,w]Uτ−1(d (u)) = 0 for all u,w ∈ U.

We get the required result appliying similar arguments in the proof of Theorem
1.

Let assume that d ([u, v]) = −[u, v]σ,τ for all u, v ∈ U. It can be proved using
the same techniques above. This completes the proof. �

Remark 6. Since every ideal in a ring R is a Lie ideal of R, conclusion of the
above theorems hold even if U is assumed to be an ideal of R. Though the
assumption that u2 ∈ U for all u ∈ U seems close to assuming that U is an
ideal of the ring, but there exist Lie ideals with this property which are no
ideals. For example, let R = {( a b

0 c ) | a, b, c ∈ Z} . Then it can be easily seen
that U = {( a b

0 a ) | a, b ∈ Z} is a Lie ideal of R satisfiying u2 ∈ U for all u ∈ U.

However, U is not an ideal of R.
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