• Title/Summary/Keyword: ${\beta}-Amyloid$

Search Result 433, Processing Time 0.023 seconds

Characterization of age- and stage-dependent impaired adult subventricular neurogenesis in 5XFAD mouse model of Alzheimer's disease

  • Hyun Ha Park;Byeong-Hyeon Kim;Seol Hwa Leem;Yong Ho Park;Hyang-Sook Hoe;Yunkwon Nam;Sujin Kim;Soo Jung Shin;Minho Moon
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.520-525
    • /
    • 2023
  • Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aβ. Although Aβ-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aβ-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aβ accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aβ accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aβ deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression.

Protective effect of Capsosiphon fulvescens on oxidative stress-stimulated neurodegenerative dysfunction of PC12 cells and zebrafish larva models

  • Laxmi Sen Thakuri;Jung Eun Kim;Jin Yeong Choi;Dong Young Rhyu
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2023
  • Reactive oxygen species (ROS) at high concentrations induce oxidative stress, an imbalanced redox state that is a prevalent cause of neurodegenerative disorders. This study aimed to investigate the protective effect of Capsosiphon fulvescens (CF) extract on oxidative stress-induced impairment of cognitive function in models of neurodegenerative diseases. CF was extracted with subcritical water and several solvents and H2O2 (0.25 mM) or aluminum chloride (AlCl3; 25 µM) as an inducer of ROS was treated in PC12 neuronal cells and zebrafish larvae. All statistical analyses were performed using one-way analysis of variance and Dunnett's test using GraphPad Prism. H2O2 and AlCl3 were found to significantly induce ROS production in PC12 neuronal cells and zebrafish larvae. In addition, they strongly affected intracellular Ca2+ levels, antioxidant enzyme activity, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) signaling, acetylcholinesterase (AChE) activity, and hallmarks of Alzheimer's disease. However, treatment of H2O2-induced PC12 cells or AlCl3-induced zebrafish larvae with CF subcritical water extract at 90℃ and CF water extract effectively regulated excessive ROS production, intracellular Ca2+ levels, and mRNA expression of superoxide dismutase, glutathione peroxide, glycogen synthase kinase-3 beta, β-amyloid, tau, AChE, BDNF, and TrkB. Our study suggested that CF extracts can be a potential source of nutraceuticals that can improve the impairment of cognitive function and synaptic plasticity by regulating ROS generation in neurodegenerative diseases.

Effect of black chokeberry on skeletal muscle damage and neuronal cell death

  • Kim, Jisu;Lee, Kang Pa;Beak, Suji;Kang, Hye Ra;Kim, Yong Kyun;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.4
    • /
    • pp.26-31
    • /
    • 2019
  • [Purpose] Numerous epidemiological studies have shown that it is possible to prescribe exercise for neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. However, despite the availability of diverse scientific knowledge, the effects of exercise in this regard are still unclear. Therefore, this study attempted to investigate a substance, such as black chokeberry (Aronia melanocapa L.) that could improve the ability of the treatment and enhance the benefits of exercising in neurodegenerative diseases. [Methods] The cell viability was tested with 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolim-5-carboxanilide and the cells were stained with ethidium homodimer-1 solution. The mRNA expression levels were evaluated by microarray. The active compounds of black chokeberry ethanolic extract (BCE) were analyzed by gas chromatography. The chemical shift analysis in the brain was performed using magnetic resonance spectroscopy. [Results] BCE treatment decreased hydrogen peroxide-induced L6 cell death and beta amyloid induced primary neuronal cell death. Furthermore, BCE treatment significantly reduced the mRNA levels of the inflammatory factors, such as IL-1α, Cxcl13, IL36rn, Itgb2, Epha2, Slamf8, Itgb6, Kdm6b, Acvr1, Cd6, Adora3, Cd27, Gata3, Tnfrsf25, Cd40lg, Clec10a, and Slc11a1, in the primary neuronal cells. Next, we identified 16 active compounds from BCE, including D-mannitol. In vivo, BCE (administered orally at a dosage of 50 mg/kg) significantly regulated chemical shift in the brain. [Conclusion] Our findings suggest that BCE can serve as a candidate for neurodegenerative disease therapy owing to its cyto-protective and anti-inflammatory effects. Therefore, BCE treatment is expected to prevent damage to the muscles and neurons of the athletes who continue high intensity exercise. In future studies, it would be necessary to elucidate the effects of combined BCE intake and exercise.

Executive Summary of the 2021 International Conference of Korean Dementia Association: A Report From the Academic Committee of the Korean Dementia Association

  • Kee Hyung Park;Jae-Won Jang;Jeewon Suh;SangHak Yi;Jae-Sung Bae;Jae-Sung Lim;Hyon Lee;Juhee Chin;Young Ho Park;Yun Jeong Hong;Geon Ha Kim;Academic Committee of the Korean Dementia Association
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.2
    • /
    • pp.45-58
    • /
    • 2022
  • Recently, aducanumab, a beta amyloid targeted immunotherapy, has been approved by the US Food and Drug Administration for the treatment of Alzheimer's dementia (AD). Although many questions need to be answered, this approval provides a promising hope for the development of AD drugs that could be supported by new biomarkers such as blood-based ones and composite neuropsychological tests that can confirm pathologic changes in early stages of AD. It is important to elucidate the complexity of AD which is known to be associated with other factors such as vascular etiologies and neuro-inflammation. Through the second international conference of the Korean Dementia Association (KDA), researchers from all over the world have participated in the exchange of opinions with KDA members on the most up-to-date topics. The Academic Committee of the KDA summarizes lectures to provide the depth of the conference as well as discussions. This will be an important milestone to widen the latest knowledge in the research of AD's diagnosis, therapeutics, pathogenesis that can lead to the establishment of future directions.

Effect of Dropwort (Oenanthe javanica) Extracts on Memory Improvement in Alzheimer's Disease Animal Model, Tg2576 mice (알츠하이머질병 모델동물인 Tg2576 마우스를 이용한 미나리 알코올추출물의 기억력 개선 효능)

  • Won, Beom Young;Shin, Ki Young;Ha, Hyun Jee;Chang, Keun-A;Yun, Yeo Sang;Kim, Ye Ri;Park, Yong Jin;Lee, Hyung Gun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.779-784
    • /
    • 2015
  • This study was conducted to investigate the effect of herbs on memory improvement by focusing on their cholinergic functions in Tg2576 mice. Seven herbs were used to obtain extracts by using alcohol and water. In screening test for cholinergic activities of the extracts, acetylcholinesterase (AChE) activity was highly inhibited in Oenanthe javanica alcohol extract (OJAE, 18.76%) as compared with the others. The OJAE-treated Tg2576 (Tg-OJAE) groups showed the statistically significant increases of latency time in passive avoidance test. Also, it was found that the concentration of $A{\beta}1-42$ was significantly reduced in Tg-OJAE groups compared to non-treated Tg2576 groups. In the additional enzyme test, it was found that $IC_{50}$ of OJAE was $991.77{\mu}g/mL$ and OJAE acted as an uncompetitive inhibitor of AChE. Therefore, it seemed that OJAE can be used for the development of processed foods for memory improvement.

Protective Effects of Black Soybean Seed Coat Extracts against Oxidative Stress-induced Neurotoxicity (산화적 손상에 의해 유도된 신경세포독성에 대한 검정콩 껍질 추출물의 보호효과)

  • Kwak, Ji Hyeon;Jo, Yu Na;Jeong, Ji Hee;Kim, Hyeon Ju;Jin, Su Il;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.257-261
    • /
    • 2013
  • Rat pheochromocytoma cells (PC12) and mice were utilized as in vitro and in vivo models to determine the neuroprotective effects of a 70% acetone extract of black soybean seed coat (BSSCE). BSSCE showed higher total phenolic contents than other extracts. Intracellular reactive oxygen species accumulation from $H_2O_2$ treatment of PC12 cells was significantly reduced when BSSCE was present in the media compared to PC12 cells treated with $H_2O_2$ only. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide (MTT) reduction assay and lactate dehydrogenase assay also showed significantly increased protective effects in PC12 cells. In addition, BSSCE improved the in vivo cognitive ability against amyloid beta peptide-induced neuronal deficits.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

Analysis of Serum Proteom after Intravenous Injection of cultivated wild ginseng pharmacopuncture (산양산삼 증류약침의 혈맥주입 후 나타나는 혈장의 Proteom 분석)

  • Lee, Dong-Hee;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.9 no.2
    • /
    • pp.17-37
    • /
    • 2006
  • Objectives : To observe the changes in the serum proteins after intravenous injection of cultivated wild ginseng pharmacopuncture. Methods : Blood was collected before and after the administration of cultivated wild ginseng pharmacopuncture and only the serum was taken. Then differences in the spots on the scanned image after carrying out 2-Dimensional electrophoresis were located and conducted mass analysis and protein identification. Results : Following results were obtained from the comparative analysis of serum proteins before and after the administration of cultivated wild ginseng pharmacopuncture. 1. 28 spots were identified before and after the administration. 2. In confirming manifestation degree, spots with more than two-times increase were 204, 1302, 2205, 3105, 7104, 8006, spots with more than one-time increase were 1101, 1505, 2013, 2403, 3009, 3010, 4002, 4009, 6704, 8101, and spots with decrease were 205, 801, 803, 3205, 5202, 6105, 6106, 7103, 9001, 9003. 3. After conducting protein identification, proteins 205, 804, 1302, 4009, 6105, 6106 are unidentified yet, and 1l01 is unnamed protein. Protein 204 is identified as complement receptor CR2-C3d, 801 as YAPl protein, 803 as antitrypsin polymer, 1505 as PRO0684, 2013 and 3010 as proapolipoprotein, 2205 as USP48, 2403 as vitamin D binding protein, 3009 as complement component 4A preprotein, 3105 as immunoglobulin lambda chain, 3205 as transthyretin, 4002 as Ras-related protein Ral-A, 4204 as beta actin, 5202 and 7104 as apolipoprotein Ll, 6704 as alpha 2 macroglobulin precursor, 7103 as complement component 3 precursor, 8006 as testis-specific protein Y, 8101 as transferrin, 9001 as (Alpha-Oxy, Beta-(Cl12g)deoxy) T-State Human Hemoglobin, and 9003 as human hemoglobin. 4. Immune protein CR2-C3d(204), which acts against microbes and pathogenic organisms, was increased by more than two-times after the administration of pharmacopuncture. 5. Antitrypsin(803), which is secreted with inflammatory response in the lungs, was reduced after the administration of pharmacopuncture. 6. Proapolipoprotein(2013, 3010) and apolipoprotein(7104), key components of the HDL-cholesterol which plays an important role in preventing arteriosclerosis, were increased after the administration of pharmacopuncture. 7. Vitamin D binding protein(DBP, 2403), protecting the lung at the time of inflammatory response, was increased after the administration of pharmacopuncture. 8. Transthyretin(TTR, 3205), which is the main protein causing familial amyloid polyneuropathy(FAP), was decreased after the administration of pharmacopuncture. 9. Ras-related protein Ral-A(4002) that controls phospholipid metabolism, cytoskeletal formation, and membrane traffic, was increased after the administration of pharmacopuncture. 10. Testis-specific protein Y(8006), which takes part in determination of the gender, was increased by more than two-times after the administration of pharmacopuncture. 11. Transferrin(8101), which balances the iron level in the body, was increased after the administration of pharmacopuncture. Conclusion : Above results support the notion that intravenous injection of cultivated wild ginseng pharmacopuncture induce changes in serum proteins and this research can be a pioneer work in finding biomarkers.

Effect of 1,2,3,4,6-penta-O-gallolyl-β-ᴅ-glucose on markers of cognitive function in human neuroblastoma SK-N-SH cell line (1,2,3,4,6-Penta-O-gallolyl-β-ᴅ-glucose가 인간 유래 신경모세포주인 SK-N-SH세포의 인지기능 표지자에 미치는 영향)

  • Yoon, Hyeon Seok;Park, So Yeon;Kim, Yoon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.715-721
    • /
    • 2021
  • Cognitive impairment and Alzheimer's disease are serious social problems associated with the rising elderly population in Korea. 1,2,3,4,6-Penta-O-galloyl-β-ᴅ-glucopyranose (PGG) is a gallotannin isolated from medicinal plants such as Rhus chinensis. This study was performed to evaluate the effect of PGG on biomarkers related to cognitive function in human neuroblastoma SK-N-SH cells. Inhibition of acetylcholinesterase (AChE) activity is considered to be one of the main therapeutic strategies. PGG inhibited AChE activity in the test tube as well as in SK-N-SH cells. In addition, PGG induced protein and mRNA expression of brain-derived neurotrophic factor (BDNF), which is a mammalian neurotrophin that plays major roles in the development, maintenance, repair, and survival of neuronal populations. As one of the underlying molecular mechanisms that induce BDNF expression, PGG induced the activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII)-cAMP response element binding protein (CREB) pathway. In conclusion, PGG may be an useful material for improving cognitive function.

Both endurance- and resistance-type exercise prevents neurodegeneration and cognitive decline in mice with impaired glucose tolerance

  • Woo, Jinhee;Shin, Ki-Ok;Park, Chan-Ho;Yoon, Byung-Kon;Kim, Do-Yeon;Bae, Ju-Yong;Lee, Yul-Hyo;Ko, Kangeun;Roh, Hee-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.804-812
    • /
    • 2019
  • The purpose of this study was to investigate the effects of different types of exercise training on neurodegeneration and cognitive function in mice with impaired glucose tolerance (IGT). Thirty-six male C57BL/6 mice were randomly assigned to the control (CO, n = 9) and impaired glucose tolerance (IGT, n = 27) groups. The IGT group consumed 45% high fat diet for 4 weeks and received 40 mg/kg of streptozotocin twice in the lower abdomen to induce IGT. After the IGT induction period, the IGT group was subdivided into IGT + sedentary (IGT, n = 9), IGT + endurance exercise (IGTE, n = 9), and IGT + resistance exercise (IGTR, n = 9). The IGTE and IGTR groups performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. Fasting glucose and glycated hemoglobin (HbA1c) levels were significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). HOMA-IR was significantly higher in IGT group than CO group (p < 0.05). Hippocampal catalase (CAT) was significantly lower in IGT group than in CO group (p < 0.05), while beta-amyloid ($A{\beta}$) was significantly higher in IGT group than in CO group (p < 0.05). Hippocampal tau was significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). The Y-maze test performance for cognitive function was significantly lower in IGT group than in CO, IGTE, and IGTR groups (p <0.05). These results suggest that IGT induces neurodegeneration and negatively affects cognitive function, while regular exercise may be effective in alleviating neurodegeneration and cognitive decline regardless of exercise type.