Browse > Article
http://dx.doi.org/10.12925/jkocs.2019.36.3.804

Both endurance- and resistance-type exercise prevents neurodegeneration and cognitive decline in mice with impaired glucose tolerance  

Woo, Jinhee (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Shin, Ki-Ok (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Park, Chan-Ho (Department of Leisure and Sport, Dong-Eui University)
Yoon, Byung-Kon (Department of Physical Education, Dong-Eui University)
Kim, Do-Yeon (Department of Physical Education, Pusan National University)
Bae, Ju-Yong (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Lee, Yul-Hyo (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Ko, Kangeun (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Roh, Hee-Tae (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
Publication Information
Journal of the Korean Applied Science and Technology / v.36, no.3, 2019 , pp. 804-812 More about this Journal
Abstract
The purpose of this study was to investigate the effects of different types of exercise training on neurodegeneration and cognitive function in mice with impaired glucose tolerance (IGT). Thirty-six male C57BL/6 mice were randomly assigned to the control (CO, n = 9) and impaired glucose tolerance (IGT, n = 27) groups. The IGT group consumed 45% high fat diet for 4 weeks and received 40 mg/kg of streptozotocin twice in the lower abdomen to induce IGT. After the IGT induction period, the IGT group was subdivided into IGT + sedentary (IGT, n = 9), IGT + endurance exercise (IGTE, n = 9), and IGT + resistance exercise (IGTR, n = 9). The IGTE and IGTR groups performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. Fasting glucose and glycated hemoglobin (HbA1c) levels were significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). HOMA-IR was significantly higher in IGT group than CO group (p < 0.05). Hippocampal catalase (CAT) was significantly lower in IGT group than in CO group (p < 0.05), while beta-amyloid ($A{\beta}$) was significantly higher in IGT group than in CO group (p < 0.05). Hippocampal tau was significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). The Y-maze test performance for cognitive function was significantly lower in IGT group than in CO, IGTE, and IGTR groups (p <0.05). These results suggest that IGT induces neurodegeneration and negatively affects cognitive function, while regular exercise may be effective in alleviating neurodegeneration and cognitive decline regardless of exercise type.
Keywords
exercise type; impaired glucose tolerance; antioxidant capacity; neurodegeneration; cognition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. B. B Hu, T. Y. Li, G. A. Colditz, W. C. Willett, J. E. Manson, "Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women" JAMA, Vol.289, pp. 1785-1791, (2003).   DOI
2 X. Zhang, H. M. Devlin, B. Smith, G. Imperatore, W. Thomas, F. Lobelo, M. K. Ali, K. Norris, S. Gruss, B. Bardenheier, P. Cho, I. Garcia de Quevedo, U. Mudaliar, C. D. Jones, J. M. Durthaler, J. Saaddine, L. S.C Geiss, E. W. Gregg, "Effect of lifestyle interventions on cardiovascular risk factors among adults without impaired glucose tolerance or diabetes: A systematic review and meta-analysis" PLoS One, Vol.12, No.5 pp. 1-27, (2017).
3 C. Sanz, J. F. Gautier, H. Hanaire, "Physical exercise for the prevention and treatment of type 2 diabetes" Diabetes Metab, Vol.36, No.5 pp. 346-351, (2010).   DOI
4 P. Quilez Llopiz, M. Reig Garcia-Galbis, "Glycemic control through physical exercise in type 2 diabetes systematic review" Nutr Hosp, Vol.31, No.4 pp. 1465-72, (2015).
5 C. Nery, S. R. A. Moraes, K. A. Novaes, M. A. Bezerra, P. V. C. Silveira, A. Lemos, "Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis" Braz J Phys Ther, Vol.21, No.6 pp. 400-415, (2017).   DOI
6 Y. H. Ku, B. K. Koo, H. J. Ahn, J. Y. Jeong, H. G. Seok, H. C. Kim, K. A. Han, K. W. Min, "Effects of Aerobic Exercise Intensity on Insulin Resistance in Patients with Type 2 Diabetes Mellitus" Korean Diabetes J, Vol.33, No.5 pp. 401-411, (2009).   DOI
7 D. A. Butterfield, F. Di Domenico, E. Barone, "Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain" Biochim Biophys Acta, Vol.1842, No.9 pp. 1693-1706, (2014).   DOI
8 W. L. Knez, D. G. Jenkins, J. S. Coombes, "The effect of an increased training volume on oxidative stress" Int J Sports Med, Vol.35, No.1 pp. 8-13, (2014).   DOI
9 S. M. de la Monte, "Type 3 diabetes is sporadic Alzheimer's disease: mini-review" Eur Neuropsychopharmacol, Vol.24, No.12 pp. 1954-1960, (2014).   DOI
10 P. Bharadwaj, N. Wijesekara, M. Liyanapathirana, P. Newsholme, L. Ittner, P. Fraser, G. Verdile, "The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-${\beta}$, Amylin, and Tau Proteins" J Alzheimers Dis, Vol.59, No.2 pp. 421-432, (2017).   DOI
11 M. Shinohara, N. Sato, "Bidirectional interactions between diabetes and Alzheimer's disease" Neurochem Int, Vol.108, pp. 296-302, (2017).   DOI
12 R. O. Roberts, D. S. Knopman, S. A. Przybelski, M. M. Mielke, K. Kantarci, G. M. Preboske, M. L. Senjem, V. S. Pankratz, Y. E. Geda, B. F. Boeve, R. J. Ivnik, W. A. Rocca, R. C. Petersen, C. R. Jr. Jack, "Association of type 2 diabetes with brain atrophy and cognitive impairment" Neurology, Vol.82, No.13 pp. 1132-1141, (2014).   DOI
13 G. R. Sridhar, G. Lakshmi, G. Nagamani, "Emerging links between type 2 diabetes and Alzheimer's disease" World J Diabetes, Vol.6, No.5 pp. 744-751, (2015).   DOI
14 J. Wu, S. L. Zhou, L. H. Pi, X. J. Shi, L. R. Ma, Z. Chen, M. L. Qu, X. Li, S. D. Nie, D. F. Liao, J. J. Pei, S. Wang, "High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction" Oncotarget, Vol.8, No.25 pp. 40843-40856, (2017).   DOI
15 R. K. West, R. Ravona-Springer, J. Schmeidler, D. Leroith, K. Koifman, E. Guerrero-Berroa, R. Preiss, H. Hoffman, J. M. Silverman, A. Heymann, M. Schnaider-Beeri, "The association of duration of type 2 diabetes with cognitive performance is modulated by long-term glycemic control" Am J Geriatr Psychiatry, Vol.22, No.10 pp. 1055-1059, (2014).   DOI
16 B. C. Heng, D. Aubel, M. Fussenegger, "Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders" Curr Opin Biotechnol, Vol.35, pp. 37-45, (2015).   DOI
17 G. Verdile, S. J. Fuller, R. N. Martins, "The role of type 2 diabetes in neurodegeneration" Neurobiol Dis, Vol.84, pp. 22-38, (2015).   DOI
18 P. S. Koekkoek, L. J. Kappelle, E. van den Berg, G. E. Rutten, G. J. Biessels, "Cognitive function in patients with diabetes mellitus: guidance for daily care" Lancet Neurol, Vol.14, No.3 pp. 329-340, (2015).   DOI
19 C. A. Cobb, M. P. Cole, "Oxidative and nitrative stress in neurodegeneration" Neurobiol Dis, Vol.84, pp. 4-21, (2015).   DOI
20 S. Tangvarasittichai, "Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus" World J Diabetes, Vol.6, No.3 pp. 456-480 (2015).   DOI
21 T. G. Son, Y. S. Kwak, Y. W. Jin, "Increased DNA Damage Induced by Glycation Propagator" J Life Sci, Vol.14, No.3 pp. 406-410, (2004).   DOI
22 J. H. Yoon, Y. Kim, I. Jeong, H. H. Lee, "The effects of exercise intensity difference on cell proliferation and dant enzymes in dentate gyrus of hippocampus in aging F344 rats" KJGD, Vol.13, No.2 pp. 83-93, (2005).
23 A. B. Knott, G. Perkins, R. Schwarzenbacher, E. Bossy-Wetzel, "Mitochondrial fragmentation in neurodegeneration" Nat Rev Neurosci, Vol.9, No.7 pp. 505-518, (2008).   DOI
24 Y. Sawikr, N. S. Yarla, I. Peluso, A. A. Kamal, G. Aliev, A. Bishayee," Neuroinflammation in Alzheimer's Disease: The Preventive and Therapeutic Potential of Polyphenolic Nutraceuticals" Adv Protein Chem Struct Biol, Vol.108, pp. 33-57, (2017).   DOI
25 I. C. Sanches, F. F. Conti, M. Sartori, M. C. Irigoyen, K. De Angelis, "Standardization of resistance exercise training: effects in diabetic ovariectomized rats" Int J Sports Med, Vol.35, No.4 pp. 323-329, (2014).   DOI
26 J. Y. Bae, "Aerobic Exercise Increases Meteorin-Like Protein in Muscle and Adipose Tissue of Chronic High-Fat Diet-Induced Obese Mice" Biomed Res Int, Vol.2018, pp. 1-9, (2018).
27 C. H. Kim, "Role of Exercise in Prevention of Type 2 Diabetes" J Korean Diabetes, Vol.12, pp. 29-32, (2011).   DOI
28 B. H. Kim, S. M. Son, "Mechanism of Developing Diabetic Vascular Complication by Oxidative Stress" Endocrinol Metab, Vol.21, No.6 pp. 448-459, (2006).
29 D. E. Laaksonen, H. M. Lakka, J. T. Salonen, L. K. Niskanen, R. Rauramaa, T. A. Lakka, "Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome" Diabetes Care, Vol.25, pp. 1612-1618, (2002).   DOI