DOI QR코드

DOI QR Code

Both endurance- and resistance-type exercise prevents neurodegeneration and cognitive decline in mice with impaired glucose tolerance

  • Woo, Jinhee (Department of Physical Education, College of Arts and Physical Education, Dong-A University) ;
  • Shin, Ki-Ok (Department of Physical Education, College of Arts and Physical Education, Dong-A University) ;
  • Park, Chan-Ho (Department of Leisure and Sport, Dong-Eui University) ;
  • Yoon, Byung-Kon (Department of Physical Education, Dong-Eui University) ;
  • Kim, Do-Yeon (Department of Physical Education, Pusan National University) ;
  • Bae, Ju-Yong (Department of Physical Education, College of Arts and Physical Education, Dong-A University) ;
  • Lee, Yul-Hyo (Department of Physical Education, College of Arts and Physical Education, Dong-A University) ;
  • Ko, Kangeun (Department of Physical Education, College of Arts and Physical Education, Dong-A University) ;
  • Roh, Hee-Tae (Department of Physical Education, College of Arts and Physical Education, Dong-A University)
  • Received : 2019.08.31
  • Accepted : 2019.09.17
  • Published : 2019.09.30

Abstract

The purpose of this study was to investigate the effects of different types of exercise training on neurodegeneration and cognitive function in mice with impaired glucose tolerance (IGT). Thirty-six male C57BL/6 mice were randomly assigned to the control (CO, n = 9) and impaired glucose tolerance (IGT, n = 27) groups. The IGT group consumed 45% high fat diet for 4 weeks and received 40 mg/kg of streptozotocin twice in the lower abdomen to induce IGT. After the IGT induction period, the IGT group was subdivided into IGT + sedentary (IGT, n = 9), IGT + endurance exercise (IGTE, n = 9), and IGT + resistance exercise (IGTR, n = 9). The IGTE and IGTR groups performed treadmill and ladder climbing exercises 5 times per week for 8 weeks, respectively. Fasting glucose and glycated hemoglobin (HbA1c) levels were significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). HOMA-IR was significantly higher in IGT group than CO group (p < 0.05). Hippocampal catalase (CAT) was significantly lower in IGT group than in CO group (p < 0.05), while beta-amyloid ($A{\beta}$) was significantly higher in IGT group than in CO group (p < 0.05). Hippocampal tau was significantly higher in IGT group than in CO, IGTE, and IGTR groups (p < 0.05). The Y-maze test performance for cognitive function was significantly lower in IGT group than in CO, IGTE, and IGTR groups (p <0.05). These results suggest that IGT induces neurodegeneration and negatively affects cognitive function, while regular exercise may be effective in alleviating neurodegeneration and cognitive decline regardless of exercise type.

Keywords

References

  1. B. C. Heng, D. Aubel, M. Fussenegger, "Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders" Curr Opin Biotechnol, Vol.35, pp. 37-45, (2015). https://doi.org/10.1016/j.copbio.2015.01.010
  2. G. Verdile, S. J. Fuller, R. N. Martins, "The role of type 2 diabetes in neurodegeneration" Neurobiol Dis, Vol.84, pp. 22-38, (2015). https://doi.org/10.1016/j.nbd.2015.04.008
  3. P. S. Koekkoek, L. J. Kappelle, E. van den Berg, G. E. Rutten, G. J. Biessels, "Cognitive function in patients with diabetes mellitus: guidance for daily care" Lancet Neurol, Vol.14, No.3 pp. 329-340, (2015). https://doi.org/10.1016/S1474-4422(14)70249-2
  4. G. R. Sridhar, G. Lakshmi, G. Nagamani, "Emerging links between type 2 diabetes and Alzheimer's disease" World J Diabetes, Vol.6, No.5 pp. 744-751, (2015). https://doi.org/10.4239/wjd.v6.i5.744
  5. C. A. Cobb, M. P. Cole, "Oxidative and nitrative stress in neurodegeneration" Neurobiol Dis, Vol.84, pp. 4-21, (2015). https://doi.org/10.1016/j.nbd.2015.04.020
  6. S. Tangvarasittichai, "Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus" World J Diabetes, Vol.6, No.3 pp. 456-480 (2015). https://doi.org/10.4239/wjd.v6.i3.456
  7. B. H. Kim, S. M. Son, "Mechanism of Developing Diabetic Vascular Complication by Oxidative Stress" Endocrinol Metab, Vol.21, No.6 pp. 448-459, (2006).
  8. J. H. Yoon, Y. Kim, I. Jeong, H. H. Lee, "The effects of exercise intensity difference on cell proliferation and dant enzymes in dentate gyrus of hippocampus in aging F344 rats" KJGD, Vol.13, No.2 pp. 83-93, (2005).
  9. A. B. Knott, G. Perkins, R. Schwarzenbacher, E. Bossy-Wetzel, "Mitochondrial fragmentation in neurodegeneration" Nat Rev Neurosci, Vol.9, No.7 pp. 505-518, (2008). https://doi.org/10.1038/nrn2417
  10. Y. Sawikr, N. S. Yarla, I. Peluso, A. A. Kamal, G. Aliev, A. Bishayee," Neuroinflammation in Alzheimer's Disease: The Preventive and Therapeutic Potential of Polyphenolic Nutraceuticals" Adv Protein Chem Struct Biol, Vol.108, pp. 33-57, (2017). https://doi.org/10.1016/bs.apcsb.2017.02.001
  11. T. G. Son, Y. S. Kwak, Y. W. Jin, "Increased DNA Damage Induced by Glycation Propagator" J Life Sci, Vol.14, No.3 pp. 406-410, (2004). https://doi.org/10.5352/JLS.2004.14.3.406
  12. I. C. Sanches, F. F. Conti, M. Sartori, M. C. Irigoyen, K. De Angelis, "Standardization of resistance exercise training: effects in diabetic ovariectomized rats" Int J Sports Med, Vol.35, No.4 pp. 323-329, (2014). https://doi.org/10.1055/s-0033-1351254
  13. J. Y. Bae, "Aerobic Exercise Increases Meteorin-Like Protein in Muscle and Adipose Tissue of Chronic High-Fat Diet-Induced Obese Mice" Biomed Res Int, Vol.2018, pp. 1-9, (2018).
  14. C. H. Kim, "Role of Exercise in Prevention of Type 2 Diabetes" J Korean Diabetes, Vol.12, pp. 29-32, (2011). https://doi.org/10.4093/jkd.2011.12.1.29
  15. D. E. Laaksonen, H. M. Lakka, J. T. Salonen, L. K. Niskanen, R. Rauramaa, T. A. Lakka, "Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome" Diabetes Care, Vol.25, pp. 1612-1618, (2002). https://doi.org/10.2337/diacare.25.9.1612
  16. F. B. B Hu, T. Y. Li, G. A. Colditz, W. C. Willett, J. E. Manson, "Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women" JAMA, Vol.289, pp. 1785-1791, (2003). https://doi.org/10.1001/jama.289.14.1785
  17. X. Zhang, H. M. Devlin, B. Smith, G. Imperatore, W. Thomas, F. Lobelo, M. K. Ali, K. Norris, S. Gruss, B. Bardenheier, P. Cho, I. Garcia de Quevedo, U. Mudaliar, C. D. Jones, J. M. Durthaler, J. Saaddine, L. S.C Geiss, E. W. Gregg, "Effect of lifestyle interventions on cardiovascular risk factors among adults without impaired glucose tolerance or diabetes: A systematic review and meta-analysis" PLoS One, Vol.12, No.5 pp. 1-27, (2017).
  18. C. Sanz, J. F. Gautier, H. Hanaire, "Physical exercise for the prevention and treatment of type 2 diabetes" Diabetes Metab, Vol.36, No.5 pp. 346-351, (2010). https://doi.org/10.1016/j.diabet.2010.06.001
  19. P. Quilez Llopiz, M. Reig Garcia-Galbis, "Glycemic control through physical exercise in type 2 diabetes systematic review" Nutr Hosp, Vol.31, No.4 pp. 1465-72, (2015).
  20. C. Nery, S. R. A. Moraes, K. A. Novaes, M. A. Bezerra, P. V. C. Silveira, A. Lemos, "Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis" Braz J Phys Ther, Vol.21, No.6 pp. 400-415, (2017). https://doi.org/10.1016/j.bjpt.2017.06.004
  21. Y. H. Ku, B. K. Koo, H. J. Ahn, J. Y. Jeong, H. G. Seok, H. C. Kim, K. A. Han, K. W. Min, "Effects of Aerobic Exercise Intensity on Insulin Resistance in Patients with Type 2 Diabetes Mellitus" Korean Diabetes J, Vol.33, No.5 pp. 401-411, (2009). https://doi.org/10.4093/kdj.2009.33.5.401
  22. D. A. Butterfield, F. Di Domenico, E. Barone, "Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain" Biochim Biophys Acta, Vol.1842, No.9 pp. 1693-1706, (2014). https://doi.org/10.1016/j.bbadis.2014.06.010
  23. W. L. Knez, D. G. Jenkins, J. S. Coombes, "The effect of an increased training volume on oxidative stress" Int J Sports Med, Vol.35, No.1 pp. 8-13, (2014). https://doi.org/10.1055/s-0033-1333746
  24. P. Bharadwaj, N. Wijesekara, M. Liyanapathirana, P. Newsholme, L. Ittner, P. Fraser, G. Verdile, "The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-${\beta}$, Amylin, and Tau Proteins" J Alzheimers Dis, Vol.59, No.2 pp. 421-432, (2017). https://doi.org/10.3233/JAD-161192
  25. S. M. de la Monte, "Type 3 diabetes is sporadic Alzheimer's disease: mini-review" Eur Neuropsychopharmacol, Vol.24, No.12 pp. 1954-1960, (2014). https://doi.org/10.1016/j.euroneuro.2014.06.008
  26. M. Shinohara, N. Sato, "Bidirectional interactions between diabetes and Alzheimer's disease" Neurochem Int, Vol.108, pp. 296-302, (2017). https://doi.org/10.1016/j.neuint.2017.04.020
  27. R. O. Roberts, D. S. Knopman, S. A. Przybelski, M. M. Mielke, K. Kantarci, G. M. Preboske, M. L. Senjem, V. S. Pankratz, Y. E. Geda, B. F. Boeve, R. J. Ivnik, W. A. Rocca, R. C. Petersen, C. R. Jr. Jack, "Association of type 2 diabetes with brain atrophy and cognitive impairment" Neurology, Vol.82, No.13 pp. 1132-1141, (2014). https://doi.org/10.1212/WNL.0000000000000269
  28. J. Wu, S. L. Zhou, L. H. Pi, X. J. Shi, L. R. Ma, Z. Chen, M. L. Qu, X. Li, S. D. Nie, D. F. Liao, J. J. Pei, S. Wang, "High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction" Oncotarget, Vol.8, No.25 pp. 40843-40856, (2017). https://doi.org/10.18632/oncotarget.17257
  29. R. K. West, R. Ravona-Springer, J. Schmeidler, D. Leroith, K. Koifman, E. Guerrero-Berroa, R. Preiss, H. Hoffman, J. M. Silverman, A. Heymann, M. Schnaider-Beeri, "The association of duration of type 2 diabetes with cognitive performance is modulated by long-term glycemic control" Am J Geriatr Psychiatry, Vol.22, No.10 pp. 1055-1059, (2014). https://doi.org/10.1016/j.jagp.2014.01.010

Cited by

  1. 다른 운동 강도의 지구성 및 저항성 운동 중재가 내당능 장애 쥐들의 당뇨관련 혈액인자에 미치는 영향 vol.37, pp.3, 2020, https://doi.org/10.12925/jkocs.2020.37.3.571
  2. Effects of intermittent ladder-climbing training on neurobiological markers in mice with type 2 diabetes vol.37, pp.4, 2020, https://doi.org/10.12925/jkocs.2020.37.4.762