• Title/Summary/Keyword: ${\beta}-1$

검색결과 14,707건 처리시간 0.049초

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Beta-Catenin Downregulation Contributes to Epidermal Growth Factor-induced Migration and Invasion of MDAMB231 Cells

  • Kwon, Arang;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제43권3호
    • /
    • pp.161-169
    • /
    • 2018
  • We previously demonstrated that epidermal growth factor (EGF) enhances cell migration and invasion of breast cancer cells in a SMAD ubiquitination regulatory factor 1 (SMURF1)-dependent manner and that SMURF1 induces degradation of ${\beta}-catenin$ in C2C12 cells. However, the relationship between EGF-induced SMURF1 and ${\beta}-catenin$ expression in breast cancer cells remains unclear. So, we investigated if EGF and SMURF1 regulate ${\beta}-catenin$ expression in MDAMB231 human breast cancer cells. When MDAMB231 cells were incubated with EGF for 24, 48, and 72 hours, EGF significantly increased expression levels of SMURF1 mRNA and protein while suppressing expression levels of ${\beta}-catenin$ mRNA and protein. Overexpression of SMURF1 downregulated ${\beta}-catenin$ mRNA and protein, whereas knockdown of SMURF1 increased ${\beta}-catenin$ expression and blocked EGF-induced ${\beta}-catenin$ downregulation. Knockdown of ${\beta}-catenin$ enhanced cell migration and invasion of MDAMB231 cells, while ${\beta}-catenin$ overexpression suppressed EGF-induced cell migration and invasion. Furthermore, knockdown of ${\beta}-catenin$ enhanced vimentin expression and decreased cytokeratin expression, whereas ${\beta}-catenin$ overexpression decreased vimentin expression and increased cytokeratin expression. These results suggest that EGF downregulates ${\beta}-catenin$ in a SMURF1-dependent manner and that ${\beta}-catenin$ downregulation contributes to EGF-induced cell migration and invasion in MDAMB breast cancer cells.

Sterols and Sterol Glycosides from the Leaves of Gynura procumbens

  • Sadikun, A.;Aminah, I.;Ismail, N.;Ibrahim, P.
    • Natural Product Sciences
    • /
    • 제2권1호
    • /
    • pp.19-23
    • /
    • 1996
  • A mixture of sterols containing ${\beta}-sitosterol$ and stigmasterol (1), and sterol glycosides containing $3-O-{\beta}-D-glucopyranosyl$ ${\beta}-sitosterol$ and $3-O-{\beta}-D-glucopyranosyl$ stigmasterol (2) were isolated from the leaves of Gynura procumbens. After acetylation of 2 with pyridine-acetic anhydride, $3-0-{\beta}-D-tetra-O-acetylglucopyranosyl$ ${\beta}>-sitosterol$ (3) was isolated.

  • PDF

류머티스 관절염과 골관절염 환자에서 Transforming growth factor β의 발현 양상 (Expressions of transforming growth factor β in patients with rheumatioid arthritis and osteoarthritis)

  • 김채기;윤원찬;송용호;김상경;최정윤
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.244-249
    • /
    • 2001
  • The transforming growth $factor-{\beta}$ ($TGF-{\beta}$) is a multifunctional cytokine modulating the onset and course of autoimmune disease as shown in experimental models. In synovial inflammation, there is a potential role for $TGF-{\beta}$ in repairment, the inhibition of cartilage and bone destruction, and the down-regulation of immune response. The biologic effects of $TGF-{\beta}$ depend on the cell type, the isoform and the availability of active $TGF-{\beta}$. We investigated $TGF-{\beta}$ expression in patients with rheumatoid arthritis (RA) and compared to those of osteoarthritis (OA). And we determined a correlation between $TGF-{\beta}1$ and $TGF-{\beta}2$, and also the relationships between each $TGF-{\beta}$ isoform and the parameters for disease activity of RA. Methods: The study population consisted of 20 patients with RA and 20 patients with OA. The commercial ELISA kit was used to study $TGF-{\beta}1$ and $TGF-{\beta}2$ levels in peripheral blood (PB) and synovial fluids (SF). Results: 1) While PB $TGF-{\beta}1$ level was of no difference between RA and OA patient groups, SF $TGF-{\beta}1$ level was higher in RA group than OA group. Similarly, PB $TGF-{\beta}2$ levels of RA and OA groups was not different, but SF $TGF-{\beta}2$ levels was higher in RA group than OA group. 2) In patients with RA, the $TGF-{\beta}1$ levels were higher than $TGF-{\beta}2$ in both the PB and SF, while in patients with OA, there showed higher readings for $TGF-{\beta}1$ than $TGF-{\beta}2$ in SF but no difference between $TGF-{\beta}1$ and $TGF-{\beta}2$ levels in PB. 3) In patients with RA, there were no correlations between PB $TGF-{\beta}1$ and PB $TGF-{\beta}2$ levels, nor between SF $TGF-{\beta}1$ and SF $TGF-{\beta}2$ levels. At the same way, there was no correlation between PB $TGF-{\beta}1$ and SF $TGF-{\beta}1$ levels, nor between each levels of $TGF-{\beta}2$ in patients with RA. 4) There was also no correlation between each $TGF-{\beta}$ isoform and the parameters for disease activity such as ESR, CRP, tender joint count, swollen joint count, rheumatoid factor, and the duration of morning stiffness except between in PB $TGF-{\beta}1$ and disease duration of RA (r=0.637, p<0.01). Conclusion: Each $TGF-{\beta}$ isoforms were higher in synovial fluid of patients with RA than that of patients with OA. The data from the RA patients demonstrated different patterns of expressions of the isoforms depending on which compartment (PB or SF) was investigated. The quantification of different $TGF-{\beta}$ isoform is thought to be important when $TGF-{\beta}$ is measured under disease conditions of RA.

  • PDF

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

주요 식중독 원인 미생물들에 대한 용량-반응 모델 연구 (A Study on Dose-Response Models for Foodborne Disease Pathogens)

  • 박명수;조준일;이순호;박경진
    • 한국식품위생안전성학회지
    • /
    • 제29권4호
    • /
    • pp.299-304
    • /
    • 2014
  • 본 연구는 정량적 미생물 위해평가(Quantitative microbial risk assessment: QMRA)에 절대적으로 필요하지만 국내의 경우 관련 정보 및 자료가 부족한 주요 식중독 원인 미생물에 대한 용량-반응모델(dose-response models) 관련 자료를 수집 정리하여 가장 적합한 용량-반응 모델을 분석 및 선정하였다. 1980년부터 2012년까지 식중독 발생과 관련이 있는 26종의 세균, 9종의 바이러스, 8종의 원생동물관련 용량-반응 모델 및 위해평가 자료들을 중심으로 국내 NDSL (National Digital Science Library), 국외 PubMed, ScienceDirect database에서 총 193개의 논문을 추출하여 정리하였다. 조사된 자료로부터 세균별, 바이러스별, 원생동물별 용량-반응 모델의 미생물 위해평가 활용여부를 확인하고, 위해평가에 활용된 모델들을 메타분석(meta-analysis)에서 사용되고 있는 Relative frequency (fi, 상대빈도 값)를 계산하여 가장 적정한 용량-반응 모델을 제시하였다. 주요 식중독 원인 미생물들인 Campylobacter jejuni, pathogenic E. coli O157:H7 (EHEC / EPEC / ETEC), Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholera, Rota virus, Cryptosporidium pavum의 적정 용량-반응 모델은 beta-poisson (${\alpha}=0.15$, ${\beta}=7.59$, fi = 0.72), beta-poisson (${\alpha}=0.49$, ${\beta}=1.81{\times}10^5$, fi = 0.67) / beta-poisson (${\alpha}=0.22$, ${\beta}=8.70{\times}10^3$, fi = 0.40) / beta-poisson (${\alpha}=0.18$, ${\beta}=8.60{\times}10^7$, fi = 0.60), exponential ($r=1.18{\times}10^{-10}$, fi = 0.14), beta-poisson (${\alpha}=0.11$, ${\beta}=6,097$, fi = 0.09), beta-poisson (${\alpha}=0.21$, ${\beta}=1,120$, fi = 0.15), exponential ($r=7.64{\times}10^{-8}$, fi = 1.00), beta-poisson (${\alpha}=0.17$, ${\beta}=1.18{\times}10^5$, fi = 1.00), beta-poisson (${\alpha}=0.25$, ${\beta}=16.2$, fi = 0.57), exponential ($r=1.73{\times}10^{-2}$, fi = 1.00), and exponential ($r=1.73{\times}10^{-2}$, fi = 0.17)로 각각 선정하였다. 본 연구에서 제시된 용량-반응 모델들은 향후 국내 QMRA 관련 연구 및 진행에 많은 도움이 될 것으로 기대된다.

Immunomodulating Activity of Fungal $\beta$-Glucan through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Proceedings of The Convention
    • /
    • pp.103-115
    • /
    • 2006
  • $\beta$-Glucan is a glucose polymer that has linkage of $\beta$-(1,3), -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, $\beta$-glucans are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding $\beta$-glucan as pathogen-associated molecular pattern (PAMP). Recently $\beta$-glucan receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-1 is consisted of 7 exons and 6 introns. The polypeptide of dectin-1 has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-1 could recognize variety of beta-1,3 and/or beta-1,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-1 mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-1 was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with $\beta$-glucans of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and TNF-$\alpha$ in the presence of LPS. However, GLG alone did not increase IL-6 nor TNF-$\alpha$. These results suggest that receptor dectin-1 cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

ON THE INTEGRAL THEORY OVER DIFFERENTIABLE MANIFOLDS (I)

  • KWAK, HYO-CHUL
    • 호남수학학술지
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 1979
  • Positive Local Coordmate($(x^1,x^2,{\cdots}x^n)$)을 갖는 Oriented Manifold M을 생각한다. M이 Compact Carrier를 갖는 경우, M위의 n차(次) Differential Form ${\phi}^{(n)}$의 적분(積分)을 $${\int}{\phi}^{(n)}=\sum_{\alpha}{\int}_{-{\infty}}^{\infty}{\cdots}{\int}_{-{\infty}}^{\infty}f_{\alpha}{\phi}^{(n)}dx^1{\cdots}dx^n$$로 정의(定義)하며 (정의(定義) 7), M위의 p 차(次)의 Differential form $\beta^{(p)}$와 Differential simplex $S^{(p)}=(S^{(p)},\;{\pi},\;{\varepsilon})$에 대하여 $S^{(p)}$위의 $\beta^{(p)}$의 적분(積分)을 $${\int}_{^{(p)}S}{\beta}^{(p)}={\int}_{S^{(p)}}{\varepsilon}{\pi}^*{\beta}^{(p)}={\int}_{E^p}f{\cdot}{\varepsilon}{\cdot}{\pi}^*{\beta}^{(p)}$$로 정의(定義)한다 (정의(定義) 9). 단(但) $\bar{S}^{(p)}$$S^{(p)}=(p_0{\cdot}p_1{\cdots}p_p)$에 의(依)하여 Spanning 되는 $E^p$의 Subspace이고 f는 $\bar{S}^{(p)}$의 특성함수(特性函數)이다. 이때 (n-1)차(次)의 Differential Form ${\beta}^{(n-1)}$이 Compart인 Carrier를 가지면 ${\int}d{\beta}^{(n-1)}=0$이 됨을 고찰(考察)하며(정리(定理 8), (p-1)차(次) Differential Form ${\beta}^{(p-1)$과 p차(次) Differential Chain $C^{(p)}$에 관(關)하여 $${\int}_{C^{(p)}}d{\beta}^{(p-1)}={\int}_{{\partial}C^{(p)}}{\beta}^{(p-1)}$$이 성립(成立)함을 구명(究明)하려 한다(정리(定理) 10).

  • PDF

The constituents of taraxacum hallaisanensis roots

  • Yang, Deuk-Suk;Whang, Wan-Kyunn;Kim, Il-Hyuk
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.507-513
    • /
    • 1996
  • Three sesquiterpene lactone compounds, two novel(1.betha.,3.betha.-dihydroxy-6.betha.,11.betha.,4.alpha.,5.alpha.,7.alpha.H -eudesm-12, 6-olide-1-O-.betha.-D-glucopyranoside, 1.betha.,3.betha.-dihydroxy-6.betha.,11.betha.,4.alpha.,5.alpha.,7.alpha.H-eudes m-12,6-olide-1-O-.betha.-D-glucopyranoside) and 1.betha.,3.betha.-dihydroxy-6.betha.,11.betha.,4.alpha.,5.alpha., 7.alpha.H-eudesm-12,6-olide were isolated from the aqueous fraction of MeOH extract of the roots from Taraxacum hallaisanensis (Compositae) employing Amberlite XAD-2, ODS-gel, silica gel and Sephadex LH-20 column chromatographics. Another known compound, (-)-epicatechin, was isolated from the aqueous fraction of the MeOH extract. The total MeOH extract also contained phytosterol and a mixture of .betha.-amyrin acetate, .alpha.-amyrin acetate and lupeol acetate. Structures of isolated compounds were elucidated by spectroscopic parameters of IR, Mass, /sup 13/C-NMR, /sup 1/H-NMR, /sup 1/H-/sup 1/H COSY, /sup 13/C-/sup 1/H COSY and HMBC.

  • PDF

쥐의 비장세포로부터 $IL-1\beta$ 분비에 있어서 한국산 겨우살이 추출물 M11C (비렉틴 구성물질)의 효과 (Effect of M11C (Non-lectin Components) Obtained from Korean Mistletoe on the $IL-1\beta$ Secretion from Mouse Splenocytes)

  • 전명하;강태봉;장성호;최완수;성낙술;허억
    • 한국약용작물학회지
    • /
    • 제15권1호
    • /
    • pp.38-45
    • /
    • 2007
  • 한국산 겨우살이 (Viscum album L)는 면역조절작용이 있음이 밝혀졌다. 본 연구에서 한국산 겨우살이 열탕추출물 M11C (non-lectin components)가 비장세포를 활성화시켜 $IL-1\beta$를 생산 분비하게 하는지를 조사하였다. 비장세포를 M11C로 자극한 후, 배양액을 수집 혹은 세포 용해물을 수거해 $IL-1\beta$ 분비와 전사량을 ELISA, immunoblotting, RT-PCR로 검사했었다. 비장세포로부터 $IL-1\beta$ 분비와 전사 효과에 있어서 M11C는 농도 의존성과 자극시간 의존성을 보였다. 비장세포로부터 최대의 $IL-1\beta$ 분비를 위한 M11C의 최대의 농도와 자극시간은 각각 $200{\mu}g/m\ell$와 8시간 이었다. 그리고 최대 $IL-1\beta$ mRNA 전사를 위한 M11C의 최대의 농도와 자극시간은 각각 $200{\mu}g/m\ell$와 4시간 이었다. 최대의 전사시간은 최대의 분비시간보다 4시간 빨리 도달된 것으로 나타났다. 이러한 최대의 $IL-1\beta$ 분비효과가 당분해효소인 Viscozyme L에 의해 완전히 저해되었다. 이는 M11C (non-lectin components)의 구성물질 들 중 다당체 혹은 올리고당들이 $IL-1\beta$ 생산 분비를 유도하는 주된 물질임을 말해주고 있다.