DOI QR코드

DOI QR Code

A Study on Dose-Response Models for Foodborne Disease Pathogens

주요 식중독 원인 미생물들에 대한 용량-반응 모델 연구

  • Park, Myoung Su (Department of Food and Nutrition, Kunsan National University) ;
  • Cho, June Ill (Food Microbiology Division, National Institute of Food and Drug Safety Evaluation) ;
  • Lee, Soon Ho (Foodborne Disease Prevention and Surveillance Division, Ministry of Food and Drug Safety) ;
  • Bahk, Gyung Jin (Department of Food and Nutrition, Kunsan National University)
  • 박명수 (군산대학교 식품영양학과) ;
  • 조준일 (식품의약품안전평가원 미생물과) ;
  • 이순호 (식품의약품안전처 식중독예방과) ;
  • 박경진 (군산대학교 식품영양학과)
  • Received : 2014.07.19
  • Accepted : 2014.11.10
  • Published : 2014.12.31

Abstract

The dose-response models are important for the quantitative microbiological risk assessment (QMRA) because they would enable prediction of infection risk to humans from foodborne pathogens. In this study, we performed a comprehensive literature review and meta-analysis to better quantify this association. The meta-analysis applied a final selection of 193 published papers for total 43 species foodborne disease pathogens (bacteria 26, virus 9, and parasite 8 species) which were identified and classified based on the dose-response models related to QMRA studies from PubMed, ScienceDirect database and internet websites during 1980-2012. The main search keywords used the combination "food", "foodborne disease pathogen", "dose-response model", and "quantitative microbiological risk assessment". The appropriate dose-response models for Campylobacter jejuni, pathogenic E. coli O157:H7 (EHEC / EPEC / ETEC), Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholera, Rota virus, and Cryptosporidium pavum were beta-poisson (${\alpha}=0.15$, ${\beta}=7.59$, fi = 0.72), beta-poisson (${\alpha}=0.49$, ${\beta}=1.81{\times}10^5$, fi = 0.67) / beta-poisson (${\alpha}=0.22$, ${\beta}=8.70{\times}10^3$, fi = 0.40) / beta-poisson (${\alpha}=0.18$, ${\beta}=8.60{\times}10^7$, fi = 0.60), exponential (r=$1.18{\times}10^{-10}$, fi = 0.14), beta-poisson (${\alpha}=0.11$, ${\beta}=6,097$, fi = 0.09), beta-poisson (${\alpha}=0.21$, ${\beta}=1,120$, fi = 0.15), exponential ($r=7.64{\times}10^{-8}$, fi = 1.00), betapoisson (${\alpha}=0.17$, ${\beta}=1.18{\times}10^5$, fi = 1.00), beta-poisson (${\alpha}=0.25$, ${\beta}=16.2$, fi = 0.57), exponential ($r=1.73{\times}10{-2}$, fi = 1.00), and exponential ($r=1.73{\times}10^{-2}$, fi = 0.17), respectively. Therefore, these results provide the preliminary data necessary for the development of foodborne pathogens QMRA.

본 연구는 정량적 미생물 위해평가(Quantitative microbial risk assessment: QMRA)에 절대적으로 필요하지만 국내의 경우 관련 정보 및 자료가 부족한 주요 식중독 원인 미생물에 대한 용량-반응모델(dose-response models) 관련 자료를 수집 정리하여 가장 적합한 용량-반응 모델을 분석 및 선정하였다. 1980년부터 2012년까지 식중독 발생과 관련이 있는 26종의 세균, 9종의 바이러스, 8종의 원생동물관련 용량-반응 모델 및 위해평가 자료들을 중심으로 국내 NDSL (National Digital Science Library), 국외 PubMed, ScienceDirect database에서 총 193개의 논문을 추출하여 정리하였다. 조사된 자료로부터 세균별, 바이러스별, 원생동물별 용량-반응 모델의 미생물 위해평가 활용여부를 확인하고, 위해평가에 활용된 모델들을 메타분석(meta-analysis)에서 사용되고 있는 Relative frequency (fi, 상대빈도 값)를 계산하여 가장 적정한 용량-반응 모델을 제시하였다. 주요 식중독 원인 미생물들인 Campylobacter jejuni, pathogenic E. coli O157:H7 (EHEC / EPEC / ETEC), Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholera, Rota virus, Cryptosporidium pavum의 적정 용량-반응 모델은 beta-poisson (${\alpha}=0.15$, ${\beta}=7.59$, fi = 0.72), beta-poisson (${\alpha}=0.49$, ${\beta}=1.81{\times}10^5$, fi = 0.67) / beta-poisson (${\alpha}=0.22$, ${\beta}=8.70{\times}10^3$, fi = 0.40) / beta-poisson (${\alpha}=0.18$, ${\beta}=8.60{\times}10^7$, fi = 0.60), exponential ($r=1.18{\times}10^{-10}$, fi = 0.14), beta-poisson (${\alpha}=0.11$, ${\beta}=6,097$, fi = 0.09), beta-poisson (${\alpha}=0.21$, ${\beta}=1,120$, fi = 0.15), exponential ($r=7.64{\times}10^{-8}$, fi = 1.00), beta-poisson (${\alpha}=0.17$, ${\beta}=1.18{\times}10^5$, fi = 1.00), beta-poisson (${\alpha}=0.25$, ${\beta}=16.2$, fi = 0.57), exponential ($r=1.73{\times}10^{-2}$, fi = 1.00), and exponential ($r=1.73{\times}10^{-2}$, fi = 0.17)로 각각 선정하였다. 본 연구에서 제시된 용량-반응 모델들은 향후 국내 QMRA 관련 연구 및 진행에 많은 도움이 될 것으로 기대된다.

Keywords

References

  1. Notermans, S. and Teunis, P.: Quantitative risk analysis and the production of microbiologically safe food - an introduction. Int. J. Food Microbiol., 30, 3-7 (1996). https://doi.org/10.1016/0168-1605(96)00987-7
  2. Buchanan, R.L., Damert, W.G., Whiting, R.C. and van Schothorst, M.: Use of epidemiological and food survey data to estimate a purposefully conservative dose-response relationship for Listeria monocytogenes levels and incidence of listeriosis. J. Food Prot., 60, 918-922 (1997).
  3. Coleman, M.E., Marks, H.M., Golden, N.J. and Latimer, H.K.: Discerning strain effects in microbial dose-response data. J. Toxi. Environ. Health., 67, 667-685 (2004). https://doi.org/10.1080/15287390490428134
  4. Haas, C.N.: Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am. J. Epidermiol., 118, 573-582 (1983).
  5. Farber, J.M., Ross, W.H. and Harwig, J.: Health risk assessment of Listeria monocytogenes in Canada. Int. J. Food Microbiol., 30, 145-156 (1996). https://doi.org/10.1016/0168-1605(96)01107-5
  6. Golden, N.J., Crouch, E.A., Latmer, H., Kadrt, A.R. and Kause, J.: Risk assessment for Clostridium perfringens in ready-to-eat partially cooked meat and poultry products. J. Food Prot., 72, 1370-1384 (2009).
  7. Rose, J.B. and Sobsey, M.D.: Quantitative risk assessment for viral contamination of shellfish and coastal waters. J. Food Prot., 56, 1043-1050 (2008).
  8. Calistri, P. and Giovannini, A.: Quantitative risk assessment of human campylobacteriosis related to the consumption of chicken meat in two Italian regions. Food Microbiol., 128, 274-287 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.08.021
  9. Pouillot, R., Goulet, V., Delignette-Muller, M.L., Mahe, A. and Cornu, M.: Quantitative Risk Assessment of Listeria monocytogenes in French Cold-Smoked Salmon: II. Risk Characterization. Risk Anal., 29, 806-819 (2009). https://doi.org/10.1111/j.1539-6924.2008.01200.x
  10. Soller, J.A., Schoen, M.E., Bartrand, T., Ravenscroft, J.E. and Ashbolt, N.J.: Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res., 44, 4674-4691 (2010). https://doi.org/10.1016/j.watres.2010.06.049
  11. Crockett, C.S., Haas, C.N., Fazil, A., Rose, J. B. and Gerba, C.P.: Prevalence of shigellosis in the U.S.: consistency with dose-response information. J. Food Microbiol., 30, 87-99 (1996). https://doi.org/10.1016/0168-1605(96)00993-2
  12. FAO/WHO (Food and Agriculture Organization of the United Nations and the World Health Organization): Risk Assessment of Vibrio parahaemolyticus in seafood. Microbiological Risk Assessment Series 16., 1-200 (2011).
  13. Oesterholt, F., Martijnse, G., Medema, G. and Kooij, D.V.D.: Health risk assessment of non-potable domestic water supplies in the Netherlands. Water Supply., 56, 171-179 (2007). https://doi.org/10.2166/aqua.2007.043
  14. Englehardt, J.D. and Swartout, J.: Predictive Bayesian microbial dose-response assessment based on suggested self-organization in primary illness response: C. parvum. Risk Anal., 26, 543-554 (2006). https://doi.org/10.1111/j.1539-6924.2006.00745.x
  15. Osiriphun, S., Koetsinchai, W., Tuitemwong, K., Erickson, L.E. and Tuitemwong. P.: Risk Estimation of Campylobacter jejuni Caused by Chicken Meat Consumption for High Risk Group in Thailand. Sci. J. Ubon Ratchathani Univ., 1, 58-64 (2010).
  16. Huertas, E., Salgot, M., Hollender, J., Weber, S., Dott., W., Khan, S. and Schafer, A.: Key objectives for water reuse concepts. Desalin., 218, 120-131 (2008). https://doi.org/10.1016/j.desal.2006.09.032
  17. Teunis, P., Takumi, K. and Shinagawa K.: Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data. Risk Anal., 24, 401-407 (2004). https://doi.org/10.1111/j.0272-4332.2004.00441.x
  18. Strachan, N.J., Doyle, M.P., Kasuga, F., Rotariu, O. and Ogden, I. D.: Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol., 103, 35-47 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.11.023
  19. Loge, F.G., Thompson, D.E. and Call, D.: PCR Detection of Specific Pathogens in Water: A Risk-Based Analysis. Environ. Sci. Tech., 36, 2754-2759 (2002). https://doi.org/10.1021/es015777m
  20. Diallo, M.B.C., Anceno, A.J., Tawatsupa, B., Houpt, E.R., Wangsuphachart, V. and Shipin O.V.: Infection risk assessment of diarrhea-related pathogens in a tropical canal network. Sci. Total Environ., 407, 223-232 (2008). https://doi.org/10.1016/j.scitotenv.2008.09.034
  21. Aarnisalo, K., Vihavainen, E., Rantala, L., Maijala, R., Suihko, M.L., Hielm, S., Tuominen, P., Ranta, J. and Raaska, L.: Use of results of microbiological analyses for risk-based control of Listeria monocytogenes in marinated broiler legs. Int J. Food Microbiol., 121, 275-284 (2008). https://doi.org/10.1016/j.ijfoodmicro.2007.11.037
  22. Chen, Y., Ross, W.H., Scott, V.N. and Gombas, D.E.: Listeria monocytogenes: low levels equal low risk. J. Food Prot., 66, 570-577 (2003).
  23. Bemrah, N., Bergis, H., Colmin, C., Beaufort, A., Millemann, Y., Dufour, B., Benet, J.J., Cerf, O. and Sanaa, M.: Quantitative risk assessment of human salmonellosis from the consumption of a turkey product in collective catering establishments. Int. J. Food Microbiol., 80, 17-30 (2003). https://doi.org/10.1016/S0168-1605(02)00145-9
  24. Gonzales-Barron, U.A., Redmond, G. and Butler, F.: A risk characterization model of Salmonella Typhimurium in Irish fresh pork sausages. Food Res. Inter., 45, 1184-1193 (2012). https://doi.org/10.1016/j.foodres.2010.04.036
  25. Shibata, T. and Solo-Gabriele, H.M.: Quantitative Microbial Risk Assessment of Human Illness from Exposure to Marine Beach Sand. Environ. Sci. Tech., 46, 2799-2805 (2012). https://doi.org/10.1021/es203638x
  26. Iwahori, J.I., Yamamoto, A., Suzuki, H., Yamamoto, T., Tsutsui, T., Motoyama, K., Sawada, M., Matsushita, T., Hasegawa, A. and Osaka, K.: Quantitative Risk Assessment of Vibrio parahaemolyticus in Finfish: A model of Raw Horse Mackerel Consumption in Japan. Risk Anal., 30, 1817-1832 (2010). https://doi.org/10.1111/j.1539-6924.2010.01444.x
  27. Payment, P. and Morin, E.: Minimal infective dose of the OSU strain of porcine rotavirus. Arch. Virol., 112, 277-282 (1990). https://doi.org/10.1007/BF01323172
  28. Ottoson, J. and Stenstrom, T.A.: Faecal contamination of greywater and associated microbial risks. Water Res., 37, 645-655 (2003). https://doi.org/10.1016/S0043-1354(02)00352-4
  29. Mena, K.D., Rose, J.D. and Gerba, C.P.: Addressing microbial food safety issues quantitatively: A risk assessment approach. Prehav. Postharv. Food Safe., 10, 415-423 (2004).
  30. Xavier, C., Gonzales-Barron, U., Paula, V., Estevinho, L. and Cadavez, V.: Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res. Int., 55, 311-323 (2014). https://doi.org/10.1016/j.foodres.2013.11.024
  31. Den Besten, H.M.W. and Zwietering, M.H.: Meta-analysis for quantitative microbiological risk assessments and benchmarking data. Trends Food Sci. Technol., 25, 34-49 (2012). https://doi.org/10.1016/j.tifs.2011.12.004
  32. Gonzales-Barron, U. and Butler, F.: The use of meta-analytical tools in risk assessment for food safety. Food Microbiol., 28, 823-827 (2011). https://doi.org/10.1016/j.fm.2010.04.007

Cited by

  1. Effect of Sanitization on Risk Reduction of Staphylococcus aureus and Pathogenic Escherichia coli on Leaf and Stem Vegetables vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.708