Browse > Article
http://dx.doi.org/10.13103/JFHS.2014.29.4.299

A Study on Dose-Response Models for Foodborne Disease Pathogens  

Park, Myoung Su (Department of Food and Nutrition, Kunsan National University)
Cho, June Ill (Food Microbiology Division, National Institute of Food and Drug Safety Evaluation)
Lee, Soon Ho (Foodborne Disease Prevention and Surveillance Division, Ministry of Food and Drug Safety)
Bahk, Gyung Jin (Department of Food and Nutrition, Kunsan National University)
Publication Information
Journal of Food Hygiene and Safety / v.29, no.4, 2014 , pp. 299-304 More about this Journal
Abstract
The dose-response models are important for the quantitative microbiological risk assessment (QMRA) because they would enable prediction of infection risk to humans from foodborne pathogens. In this study, we performed a comprehensive literature review and meta-analysis to better quantify this association. The meta-analysis applied a final selection of 193 published papers for total 43 species foodborne disease pathogens (bacteria 26, virus 9, and parasite 8 species) which were identified and classified based on the dose-response models related to QMRA studies from PubMed, ScienceDirect database and internet websites during 1980-2012. The main search keywords used the combination "food", "foodborne disease pathogen", "dose-response model", and "quantitative microbiological risk assessment". The appropriate dose-response models for Campylobacter jejuni, pathogenic E. coli O157:H7 (EHEC / EPEC / ETEC), Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholera, Rota virus, and Cryptosporidium pavum were beta-poisson (${\alpha}=0.15$, ${\beta}=7.59$, fi = 0.72), beta-poisson (${\alpha}=0.49$, ${\beta}=1.81{\times}10^5$, fi = 0.67) / beta-poisson (${\alpha}=0.22$, ${\beta}=8.70{\times}10^3$, fi = 0.40) / beta-poisson (${\alpha}=0.18$, ${\beta}=8.60{\times}10^7$, fi = 0.60), exponential (r=$1.18{\times}10^{-10}$, fi = 0.14), beta-poisson (${\alpha}=0.11$, ${\beta}=6,097$, fi = 0.09), beta-poisson (${\alpha}=0.21$, ${\beta}=1,120$, fi = 0.15), exponential ($r=7.64{\times}10^{-8}$, fi = 1.00), betapoisson (${\alpha}=0.17$, ${\beta}=1.18{\times}10^5$, fi = 1.00), beta-poisson (${\alpha}=0.25$, ${\beta}=16.2$, fi = 0.57), exponential ($r=1.73{\times}10{-2}$, fi = 1.00), and exponential ($r=1.73{\times}10^{-2}$, fi = 0.17), respectively. Therefore, these results provide the preliminary data necessary for the development of foodborne pathogens QMRA.
Keywords
foodborne disease pathogen; quantitative microbiological risk assessment; meta-analysis; dose-response model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mena, K.D., Rose, J.D. and Gerba, C.P.: Addressing microbial food safety issues quantitatively: A risk assessment approach. Prehav. Postharv. Food Safe., 10, 415-423 (2004).
2 Xavier, C., Gonzales-Barron, U., Paula, V., Estevinho, L. and Cadavez, V.: Meta-analysis of the incidence of foodborne pathogens in Portuguese meats and their products. Food Res. Int., 55, 311-323 (2014).   DOI
3 Den Besten, H.M.W. and Zwietering, M.H.: Meta-analysis for quantitative microbiological risk assessments and benchmarking data. Trends Food Sci. Technol., 25, 34-49 (2012).   DOI
4 Gonzales-Barron, U. and Butler, F.: The use of meta-analytical tools in risk assessment for food safety. Food Microbiol., 28, 823-827 (2011).   DOI
5 Notermans, S. and Teunis, P.: Quantitative risk analysis and the production of microbiologically safe food - an introduction. Int. J. Food Microbiol., 30, 3-7 (1996).   DOI   ScienceOn
6 Buchanan, R.L., Damert, W.G., Whiting, R.C. and van Schothorst, M.: Use of epidemiological and food survey data to estimate a purposefully conservative dose-response relationship for Listeria monocytogenes levels and incidence of listeriosis. J. Food Prot., 60, 918-922 (1997).
7 Coleman, M.E., Marks, H.M., Golden, N.J. and Latimer, H.K.: Discerning strain effects in microbial dose-response data. J. Toxi. Environ. Health., 67, 667-685 (2004).   DOI
8 Haas, C.N.: Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am. J. Epidermiol., 118, 573-582 (1983).
9 Farber, J.M., Ross, W.H. and Harwig, J.: Health risk assessment of Listeria monocytogenes in Canada. Int. J. Food Microbiol., 30, 145-156 (1996).   DOI
10 Golden, N.J., Crouch, E.A., Latmer, H., Kadrt, A.R. and Kause, J.: Risk assessment for Clostridium perfringens in ready-to-eat partially cooked meat and poultry products. J. Food Prot., 72, 1370-1384 (2009).
11 Rose, J.B. and Sobsey, M.D.: Quantitative risk assessment for viral contamination of shellfish and coastal waters. J. Food Prot., 56, 1043-1050 (2008).
12 Calistri, P. and Giovannini, A.: Quantitative risk assessment of human campylobacteriosis related to the consumption of chicken meat in two Italian regions. Food Microbiol., 128, 274-287 (2008).   DOI
13 Pouillot, R., Goulet, V., Delignette-Muller, M.L., Mahe, A. and Cornu, M.: Quantitative Risk Assessment of Listeria monocytogenes in French Cold-Smoked Salmon: II. Risk Characterization. Risk Anal., 29, 806-819 (2009).   DOI
14 Englehardt, J.D. and Swartout, J.: Predictive Bayesian microbial dose-response assessment based on suggested self-organization in primary illness response: C. parvum. Risk Anal., 26, 543-554 (2006).   DOI
15 Crockett, C.S., Haas, C.N., Fazil, A., Rose, J. B. and Gerba, C.P.: Prevalence of shigellosis in the U.S.: consistency with dose-response information. J. Food Microbiol., 30, 87-99 (1996).   DOI
16 FAO/WHO (Food and Agriculture Organization of the United Nations and the World Health Organization): Risk Assessment of Vibrio parahaemolyticus in seafood. Microbiological Risk Assessment Series 16., 1-200 (2011).
17 Oesterholt, F., Martijnse, G., Medema, G. and Kooij, D.V.D.: Health risk assessment of non-potable domestic water supplies in the Netherlands. Water Supply., 56, 171-179 (2007).   DOI
18 Osiriphun, S., Koetsinchai, W., Tuitemwong, K., Erickson, L.E. and Tuitemwong. P.: Risk Estimation of Campylobacter jejuni Caused by Chicken Meat Consumption for High Risk Group in Thailand. Sci. J. Ubon Ratchathani Univ., 1, 58-64 (2010).
19 Huertas, E., Salgot, M., Hollender, J., Weber, S., Dott., W., Khan, S. and Schafer, A.: Key objectives for water reuse concepts. Desalin., 218, 120-131 (2008).   DOI
20 Teunis, P., Takumi, K. and Shinagawa K.: Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data. Risk Anal., 24, 401-407 (2004).   DOI   ScienceOn
21 Strachan, N.J., Doyle, M.P., Kasuga, F., Rotariu, O. and Ogden, I. D.: Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol., 103, 35-47 (2005).   DOI
22 Bemrah, N., Bergis, H., Colmin, C., Beaufort, A., Millemann, Y., Dufour, B., Benet, J.J., Cerf, O. and Sanaa, M.: Quantitative risk assessment of human salmonellosis from the consumption of a turkey product in collective catering establishments. Int. J. Food Microbiol., 80, 17-30 (2003).   DOI
23 Diallo, M.B.C., Anceno, A.J., Tawatsupa, B., Houpt, E.R., Wangsuphachart, V. and Shipin O.V.: Infection risk assessment of diarrhea-related pathogens in a tropical canal network. Sci. Total Environ., 407, 223-232 (2008).   DOI
24 Aarnisalo, K., Vihavainen, E., Rantala, L., Maijala, R., Suihko, M.L., Hielm, S., Tuominen, P., Ranta, J. and Raaska, L.: Use of results of microbiological analyses for risk-based control of Listeria monocytogenes in marinated broiler legs. Int J. Food Microbiol., 121, 275-284 (2008).   DOI   ScienceOn
25 Chen, Y., Ross, W.H., Scott, V.N. and Gombas, D.E.: Listeria monocytogenes: low levels equal low risk. J. Food Prot., 66, 570-577 (2003).
26 Gonzales-Barron, U.A., Redmond, G. and Butler, F.: A risk characterization model of Salmonella Typhimurium in Irish fresh pork sausages. Food Res. Inter., 45, 1184-1193 (2012).   DOI   ScienceOn
27 Shibata, T. and Solo-Gabriele, H.M.: Quantitative Microbial Risk Assessment of Human Illness from Exposure to Marine Beach Sand. Environ. Sci. Tech., 46, 2799-2805 (2012).   DOI
28 Payment, P. and Morin, E.: Minimal infective dose of the OSU strain of porcine rotavirus. Arch. Virol., 112, 277-282 (1990).   DOI
29 Ottoson, J. and Stenstrom, T.A.: Faecal contamination of greywater and associated microbial risks. Water Res., 37, 645-655 (2003).   DOI   ScienceOn
30 Soller, J.A., Schoen, M.E., Bartrand, T., Ravenscroft, J.E. and Ashbolt, N.J.: Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res., 44, 4674-4691 (2010).   DOI
31 Loge, F.G., Thompson, D.E. and Call, D.: PCR Detection of Specific Pathogens in Water: A Risk-Based Analysis. Environ. Sci. Tech., 36, 2754-2759 (2002).   DOI   ScienceOn
32 Iwahori, J.I., Yamamoto, A., Suzuki, H., Yamamoto, T., Tsutsui, T., Motoyama, K., Sawada, M., Matsushita, T., Hasegawa, A. and Osaka, K.: Quantitative Risk Assessment of Vibrio parahaemolyticus in Finfish: A model of Raw Horse Mackerel Consumption in Japan. Risk Anal., 30, 1817-1832 (2010).   DOI