• Title/Summary/Keyword: ${\beta}$-sheet structure

Search Result 83, Processing Time 0.024 seconds

Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles

  • Ha, Ho-Kyung;Nam, Gyeong-Won;Khang, Dongwoo;Park, Sung Jean;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.123-133
    • /
    • 2017
  • The development of a new manufacturing process, a two-step temperature treatment, to modulate the physicochemical properties of nanoparticles including the size is critical. This is because its physicochemical properties can be key factors affecting the cellular uptake and the bioavailability of bioactive compounds encapsulated in nanoparticles. The aims of this study were to produce (beta-lactoglobulin) ${\beta}-lg$ nanoparticles and to understand how two-step temperature treatment could affect the formation and physicochemical properties of ${\beta}-lg$ nanoparticles. The morphological and physicochemical properties of ${\beta}-lg$ nanoparticles were determined using atomic force microscopy and a particle size analyzer, respectively. Circular dichroism spectroscopy was used to investigate the secondary structure of ${\beta}-lg$. The surface hydrophobicity and free thiol groups of ${\beta}-lg$ were increased with a decrease in sub-ambient temperature and an increase in mild heat temperature. As sub-ambient temperature was decreased, a decrease in ${\alpha}-helical$ content and an increase in ${\beta}-sheet$ content were observed. The two-step temperature treatment firstly involved a sub-ambient temperature treatment from 5 to $20^{\circ}C$ for 30 min, followed secondly by a mild heat temperature treatment from 55 to $75^{\circ}C$ for 10 min. This resulted in the production of spherically-shaped particles with a size ranging from 61 to 214 nm. Two-way ANOVA exhibited the finding that both sub-ambient and mild heat temperature significantly (p<0.0001) affected the size of nanoparticles. Zeta-potential values of ${\beta}-lg$ nanoparticles were reduced with increasing mild heat temperature. In conclusion, two-step temperature treatment was shown to play an important role in the manufacturing process - both due to its inducement of the conformational changes of ${\beta}-lg$ during nanoparticle formation, and due to its modulation of the physicochemical properties of ${\beta}-lg$ nanoparticles.

Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein

  • Yeom, Kyuho;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • FANCJ is a DNA helicase which contributes genome stability by resolving G-quadruplex DNA from 5' to 3' direction. In addition to main ATPase helicase core, FANCJ has the protein binding region at its C-terminal part. BRCA1 and BLM are the binding partner of FANCJ and these protein-protein interactions contribute genomic stability and the proper response to replication stress. As the first attempt for studying FANCJ-BLM interaction, we prepared BLM binding region of FANCJ and characterized with CD and NMR spectroscopy. FANCJ (881-941) with N-ter 6xHis was purified as the oligomer. Secondary structure prediction based on CD data revealed that FANCJ (881-941) composed with ${\beta}$ sheet, turn and coils.$^1H-^{15}N$ HSQC spectra showed nonhomogeneous peak intensities with less number of peaks comparing than the number of amino acids in the construct. It indicated that optimization should be necessary for detailed further structural studies.

The Oxygen-Transport System of Polar Fish: The Evolution of Hemoglobin

  • Verde Cinzia;Prisco Guido di
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.617-623
    • /
    • 2003
  • Organisms living in the Arctic and Antarctic regions are exposed to strong constraints, of which temperature is a driving factor. Evolution has led to special adaptations, some with important implications at the biochemical, physiological, and molecular levels. The northern and southern polar oceans have very different characteristics. Tectonic and oceanographic events have played a key role in delimiting the two polar ecosystems and influencing evolution. Antarctica has been isolated and cold longer than the Arctic; its ice sheet developed at least 10 million years earlier. As an intermediate system, the Arctic is a connection between the more extreme, simpler Antarctic system and the very complex temperate and tropical systems. By studying the molecular bases of cold adaptation in polar fish, and taking advantage of the information available on hemoglobin structure and function, we analysed the evolutionary history of the ${\alpha}\;and\;{\beta}globins$ of Antarctic and Arctic hemoglobin using the molecular clock hypothesis as a basis for reconstructing the phylogenetic relationships among species.

Structural Characteristics of Regenerated Antheraea pernyi Silk Fibroin Film treated with ethanol (에탄올처리 재생 작잠 견피브로인 필름의 구조 특성)

  • 우순옥;권해용;엄인철;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.114-119
    • /
    • 2000
  • Effects of ethanlo treatment on the structural and thermal characteristics of regenerated Antheraea pernyi silk fibroin (RSF) were investigated. Infrared spectroscopy and X-ray diffractometry showed that the conformational transition of RSF might be affected by concentration of ethanol and its treatment time. The structure of RSF was rapidly changed from random coil to $\beta$-sheet conformation when RSF was treated with les than 75% ethanol concentration. However, RSF treated with ethanol(100%) did not show conformational change. Differential scanning calorimetry showed that exotherm at 232$\^{C}$ disappeared and the intensity of endotherm at 228$\^{C}$ decreased with treatment of 75% ethanol. Dynamic thermal analysis showed that loss modulus (E") and tan $\delta$$\_$E/ of RSF treated with aqueous ethanol was broaden and shifted to higher temperature in comparison with those of untreated RSF.

  • PDF

Fluorescent Silk Fibroin Nanoparticles Prepared Using a Reverse Microemulsion

  • Myung, Seung-Jun;Kim, Hun-Sik;Kim, Yeseul;Chen, Peng;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.604-608
    • /
    • 2008
  • Color dye-doped silk fibroin nanoparticles were successfully fabricated using a microemulsion method. An aqueous silk fibroin solution was prepared by dissolving cocoons (Bombyx mori) in a concentrated lithium bromide solution followed by dialysis. A color dye solution was also mixed with the aqueous silk fibroin solution. The surfactants used for the microemulsion were then removed by methanol and ethanol, yielding color dye-doped silk fibroin nanoparticles, approximately 167 nm in diameter. The secondary structure of the nanoparticles showed a $\beta$-sheet conformation, as characterized by Fourier transform infrared spectroscopy. The morphology of the nanoparticles was determined by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, and their size and size distribution were measured by dynamic light scattering. The color dye-doped silk fibroin nanoparticles were examined by confocal laser scanning microscopy.

Probing the Movement of Helix F of $\alpha_1$-Antitrypsin

  • Baek, Je-Hyun;Kim, Jun;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.31-31
    • /
    • 2002
  • $\alpha$$_1$-Antitrypsin is a member of the serine protease inhibitor (serpin) family that share a common tertiary structure. The reactive site loop (RSL) of serpins is exposed at one end of the molecule for protease binding. Upon cleavage by a target protease, the RSL is inserted into the major $\beta$-sheet A, which is a necessary process for formation of a tight inhibitory complex.(omitted)

  • PDF

PEGylation of Silk Fibroin Model Peptide

  • Kweon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong;Woo, Soon-Ok;Han, Sang-Mi;Lee, Kwang-Gill
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • Silk fibroin model peptide, alanine pentamer was synthesized through solid-phase method and modified with poly(ethylene glycol). Nuclear magnetic resonance spectrometry and Fourier-transform infrared spectroscopy showed the conformation of alanine pentamer, $\beta$-sheet structure and random coil conformation were not changed with PEGylation. Differential scanning calorimetry showed that relatively strong exothermic peak around $180^{\circ}C$ by PEGylation. No cytotoxicity of PEGylated pentamer was observed by L929 cell proliferation test.

Structural Characterization of Silk Fiber Treated with Calcium Nitrate (질산칼슘 처리 농도에 따른 수축견사의 구조특성)

  • 이광길;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.186-196
    • /
    • 1997
  • The IR crystallinity index of Calcium nitrate treated silk fiber decreased proportionally to the concentration of calcium nitrate. A partial change of conformation was observed in the concentration of over 46.4-47.6% changing from $\beta$-sheet or to random coil in the crystalline region. This is in coincidence with the result of crystallinity index, which was started to be reduced in the concentration range of 46.4-47.6%. A same trend was observed for the X-ray order factor, birefringence, degree of orientation and surface structure. These structural parameters were remarkably changed on the treatment of silk fibers with concentration of 46.4-17, 6% calcium nitrate. Therefore, it seems that there exists a critical concentration of calcium nitrate in affection the structure and morphology of silk fibers. According to the examination of surface morphology, the fine stripe was observed in the direction of fiber axis at 46.4% concentration. However, the treated concentration was exceeded by 47.6%, the cracks were appeared severely on the fiber surface in the transverse direction as well as fiber axis direction. This result might be related to the tensile properties, specially a tenacity of silk fibers. As a result of quantitative analysis of a dilute acid hydrolysis, three different regions, which are known as a amorphous, semi-crystalline and crystalline region, could be obtained. The hydrolysis rate curves were different with various concentrations of treatment and the relative contents of each region could be calculated.

  • PDF

Silk Fibroin Microsphere and Its Characterization

  • Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo;Kweon, Hae-Yong;Woo, Soon-Ok
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.2
    • /
    • pp.151-155
    • /
    • 2003
  • Using gel filtration chromatography, high molecular silk fibroin with high purity was obtained and silk flbroin microsphere particles (SFMP) could be simply made by spray dryer method. Also, some of the physicochemical properties of SFMP and morphology were investigated. The average molecular weight of pure silk fibroin protein dissolved in calcium chloride is about 61,500g/㏖ as measured by gel permeation chromatography. SFMP was spherical in shape, and particles, sized average of 2 ${\pm}$ 10 ${\mu}$, were observed by SEM and particle analyzer, respectively. Obtaining microspheres particles by spray dryer method accelerated the transition from the random coil to the $\beta$-sheet structure during spray dryer treatment. It was identified by the basic fourier transform infrared spectroscopy of SFMP. The swelling ratio of SFMP is majorly dependent on the pH of the solution, not on the occurred gelation. The characteristic structure, which might be applicable to immobilization of drugs is superior to other matrix materials for the use of biomaterials with skin affinity.

Production and Amyloid fibril formation of tandem repeats of recombinant Yeast Prion like protein fragment

  • Kim, Yong-Ae;Park, Jae-Joon;Hwang, Jung-Hyun;Park, Tae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.175-186
    • /
    • 2011
  • Amyloid fibrils have long been known to be the well known ${\alpha}$-helix to ${\beta}$-sheet transition characterizing the conversion of cellular to scrapie forms of the prion protein. A very short sequence of Yeast prion-like protein, GNNQQNY (SupN), is responsible for aggregation that induces diseases. KSI-fused tandem repeats of SupN vector are constructed and used to express SupN peptide in Escherichia coli (E.Coli). A method for a production, purification, and cleavage of tandem repeats of recombinant isotopically enriched SupN in E. coli is described. This method yields as much as 20 mg/L of isotope-enriched fusion proteins in minimal media. Synthetic SupN peptides and $^{13}C$ Gly labeled SupN peptides are studied by Congo Red staining, Birefringence and transmission electron microscopy to characterize amyloid fibril formation. To get a better understanding of aggregation-structure relationship of 7 residues of Yeast prion-like protein, the change of a conformational structure will be studied by $^{13}C$ solid-state nmr spectroscopy as powder of both amorphous and fibrillar forms.