DOI QR코드

DOI QR Code

The Oxygen-Transport System of Polar Fish: The Evolution of Hemoglobin

  • Published : 2003.12.31

Abstract

Organisms living in the Arctic and Antarctic regions are exposed to strong constraints, of which temperature is a driving factor. Evolution has led to special adaptations, some with important implications at the biochemical, physiological, and molecular levels. The northern and southern polar oceans have very different characteristics. Tectonic and oceanographic events have played a key role in delimiting the two polar ecosystems and influencing evolution. Antarctica has been isolated and cold longer than the Arctic; its ice sheet developed at least 10 million years earlier. As an intermediate system, the Arctic is a connection between the more extreme, simpler Antarctic system and the very complex temperate and tropical systems. By studying the molecular bases of cold adaptation in polar fish, and taking advantage of the information available on hemoglobin structure and function, we analysed the evolutionary history of the ${\alpha}\;and\;{\beta}globins$ of Antarctic and Arctic hemoglobin using the molecular clock hypothesis as a basis for reconstructing the phylogenetic relationships among species.

Keywords

References

  1. Balushkin, A.V. 1992. Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J. Ichthyol., 32, 90-110.
  2. Brittain, T. 1987. The Root effect. Comp. Biochem. Physiol, 86B, 473-481.
  3. D’Avino, R., C. Caruso, M. Tamburrini, M. Romano, B. Rutigliano, P. Polverino de Laureto, L. Camardella, V. Carratore, and di G. Prisco. 1994. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J. Biol. Chem., 269, 9675-9681.
  4. di Prisco, G. 1997. Physiological and biochemical adaptations in fish to a cold marine environment. p. 251-260. In: Proceedings of the SCAR 6th Biology Symposium "Antarctic communities: species, structure and survival", ed. by B. Battaglia, J. Valencia, and D.W.H. Walton. Cambridge University Press, Cambridge.
  5. di Prisco, G. 1998. Molecular adaptations in Antarctic fish hemoglobins. p. 339-353. In: Fishes of Antartica: A Biological Overview, ed. by di G. Prisco, E. Pisano, and A. Clarke. Springer Verlag, Milan.
  6. di Prisco, G., R. D’Avino, C. Caruso, M. Tamburrini, L. Camardella, B. Rutigliano, V. Carratore, and M. Romano. 1991. The biochemistry of oxygen transport in red-blooded Antarctic fish. p. 263-281. In: Biology of Antarctic Fish, ed. by G. di Prisco, B. Maresca, and B. Tota. Springer Verlag, Berlin.
  7. Eastman, J.T. 2000. Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarctic Sci., 12, 276-287.
  8. Fairbanks, M.B., J.R. Hoffert, and P.O. Fromm. 1969. The dependence of the oxygen concentrating mechanism of the teleost eye (Salmo gairdneri) on the enzyme carbonic anhydrase. J. Gen. Physiol., 54, 203-211. https://doi.org/10.1085/jgp.54.2.203
  9. Farmer, M., H.J. Fyhn, U.E.H. Fyhn, and R.W. Noble. 1979. Occurrence of Root effect haemoglobins in Amazonian fishes. Comp. Biochem. Physiol., 62A, 115-124.
  10. Ito, N., N.H. Komiyama, and G. Fermi. 1995. Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures. J. Mol. Biol., 250, 648-658. https://doi.org/10.1006/jmbi.1995.0405
  11. Mazzarella, L., R. D’Avino, di G. Prisco, C. Savino, L. Vitagliano, C.E. Moody, and A. Zagari. 1999. Crystal structure of Trematomus newnesi haemoglobin re-opens the Root effect question. J. Mol. Biol., 287, 897-906. https://doi.org/10.1006/jmbi.1999.2632
  12. Perutz, M.F. and M. Brunori. 1982. Sterochemistry of cooperative effects in fish and amphibian hemoglobins. Nature, 229, 421-42.
  13. Perutz, M.F., G. Fermi, B. Luisi, B. Shaanan, and R. Liddington. 1987. Stereochemistry of cooperativity mechanism in hemoglobin. Acad. Chem. Res., 20, 309-321. https://doi.org/10.1021/ar00141a001
  14. Pisano, E., C. Ozouf-Costaz, and V. Prirodina. 1998. Chromosome diversification in Antarctic fish (Notothenioidei). p. 275-285. In: Fishes of Antartica: A Biological Overview, ed. by di G. Prisco, E. Pisano, and A. Clarke. Springer Verlag, Milan.
  15. Riccio, A., M. Tamburrini, V. Carratore, and G. di Prisco. 2000. Functionally distinct haemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J. Fish Biol., 57, 20-32. https://doi.org/10.1111/j.1095-8649.2000.tb02242.x
  16. Ritchie, P.A., L. Bargelloni, A. Meyer, J.A. Taylor, J.A. MacDonald, and D.M. Lambert. 1996. Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Mol. Phylogen. Evol., 5, 383-390. https://doi.org/10.1006/mpev.1996.0033
  17. Riggs, A. 1988. The Bohr effect. Ann. Rev. Physiol., 50, 181-204. https://doi.org/10.1146/annurev.ph.50.030188.001145
  18. Ruud, J.T. 1954. Vertebrates without erythrocytes and blood pigment. Nature, 173, 848-850. https://doi.org/10.1038/173848a0
  19. Stam, W.T., J.J. Beintema, R. D’Avino, M. Tamburrini, and G. di Prisco. 1997. Molecular evolution of hemoglobin of Antarctic fishes (Notothenioidei). J. Mol. Evol., 45, 437-445. https://doi.org/10.1007/PL00006248
  20. Stam, W.T., J.J. Beintema, R. D’Avino, M. Tamburrini, E. Cocca, and G. di Prisco. 1998. Evolutionary studies on teleost hemoglobin sequences. p. 355-359. In: Fishes of Antartica: A Biological Overview, ed. by di G. Prisco, E. Pisano, and A. Clarke. Springer Verlag, Milan.
  21. Tamburrini, M., R. D’Avino, A. Fago, V. Carratore, A. Kunzmann, and G. di Prisco. 1996. The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J. Biol. Chem., 271, 23780-23785. https://doi.org/10.1074/jbc.271.39.23780
  22. Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and linearized tree. Mol. Biol. Evol., 12, 823-833.
  23. Verde, C., V. Carratore, A. Riccio, M. Tamburrini, E. Parisi, and G. di Prisco. 2002. The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor. J. Biol. Chem., 277, 36312-36320. https://doi.org/10.1074/jbc.M202474200
  24. Verde, C., E. Parisi, and G. di Prisco. 2003. The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the Root effect. J. Mol. Evol, in press. https://doi.org/10.1007/s00239-003-0035-y

Cited by

  1. The phylogeny of polar fishes and the structure, function and molecular evolution of hemoglobin vol.30, pp.5, 2007, https://doi.org/10.1007/s00300-006-0217-3
  2. The evolution of thermal adaptation in polar fish vol.385, 2006, https://doi.org/10.1016/j.gene.2006.04.006