Silk Fibroin Microsphere and Its Characterization

  • Yeo, Joo-Hong (Department of sericulture and Entomology, National Institute of Agricultural Science and Technology) ;
  • Lee, Kwang-Gill (Department of sericulture and Entomology, National Institute of Agricultural Science and Technology) ;
  • Lee, Yong-Woo (Department of sericulture and Entomology, National Institute of Agricultural Science and Technology) ;
  • Kweon, Hae-Yong (Department of sericulture and Entomology, National Institute of Agricultural Science and Technology) ;
  • Woo, Soon-Ok (Department of sericulture and Entomology, National Institute of Agricultural Science and Technology)
  • Published : 2003.06.01

Abstract

Using gel filtration chromatography, high molecular silk fibroin with high purity was obtained and silk flbroin microsphere particles (SFMP) could be simply made by spray dryer method. Also, some of the physicochemical properties of SFMP and morphology were investigated. The average molecular weight of pure silk fibroin protein dissolved in calcium chloride is about 61,500g/㏖ as measured by gel permeation chromatography. SFMP was spherical in shape, and particles, sized average of 2 ${\pm}$ 10 ${\mu}$, were observed by SEM and particle analyzer, respectively. Obtaining microspheres particles by spray dryer method accelerated the transition from the random coil to the $\beta$-sheet structure during spray dryer treatment. It was identified by the basic fourier transform infrared spectroscopy of SFMP. The swelling ratio of SFMP is majorly dependent on the pH of the solution, not on the occurred gelation. The characteristic structure, which might be applicable to immobilization of drugs is superior to other matrix materials for the use of biomaterials with skin affinity.

Keywords

References

  1. Asakura, T., J. H. Yeo, M. Demura, T. Itoh, T. Fujito, M. Imanari, K. N. Linda and A. C. Timothy (1993) Structural analysis of uniaxially aligned polymers using solid-state 15N NMR. Macromolecules 26, 6660-6663 https://doi.org/10.1021/ma00076a056
  2. Canetti, M., A. Seves, F. Secundo and G. Vecchio (1989a) CD and small angle X-ray scattering of silk fibroin in solution-I. Biopolymers 28, 1613-1617 https://doi.org/10.1002/bip.360280910
  3. Canetti, M., A. Seves, F. Secundo and G. Vecchio (1989b) CD and small angle X-ray scattering of silk fibroin in solution-II. Biopolymers 41, 173-178
  4. Chen, K., K. lura, R. Aizawa and K. Hirabayashi (1991) The Digestion of Silk Fibroin by Rat. J. Seric. Sci. Jpn. 60, 402-403
  5. Cho, C. S., Y. I. Jeong, T. Ishihara, R. Takei, J. U. Park, K. H. Park, A. Maruyama and T. Akaike (1997) Simple Preparation of nanoparticles coated with carbohydrate-carrying Polymers. Biomaterials 18, 323-326 https://doi.org/10.1016/S0142-9612(96)00138-X
  6. Hagel, L. (1998) Protein purification: Principals, High-Resolution Methods and Applications. Wiley-VCH Press, London
  7. Hanawa, T., A. Watanabe, T. Tsuchiya, R. Ikoma, M. Hidaka and M. Sugihara (1995a) New oral dosage form for elderly patients: preparation and haracterization of silk fibroin gel. Chem. Pharm. BuIl. 43, 284-288 https://doi.org/10.1248/cpb.43.284
  8. Hanawa, T., A. Watanabe, T. Tsuchiya, R. Ikoma, M. Hidaka and M. Sugihara (1995b) New oral dosage form for elderly patients.Release behavior of benfotiamine from silk gel. Chem. Pharm. BulI. 43, 872-875 https://doi.org/10.1248/cpb.43.872
  9. Inoue, K., M. Kurokawa, S. Nishikawa and M. Tsukada (1989) Use of Bombyx mori silk fibroin as a substratum for cuItivation of animal cells. J. Biochem. Biophy. Methods 37, 159-164
  10. Jeong, Y. I., J. B. Cheon, S. H. Kim, J. W. Nah, Y. M. Lee, Y. K. Sung, T. Akaike and C. S. Cho (1998) Clonazapam release from core-shell type nanoparticles in vitro. J. Control. Relea. 51, 169-178 https://doi.org/10.1016/S0168-3659(97)00163-6
  11. Kim, S. Y., I. G. Shin, Y. M. Lee, C. S. Cho and Y. K. Sung (1998) Methoxy poly (ethylene glycol) and \beta-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviors. J. Control. Relea. 51, 13-22 https://doi.org/10.1016/S0168-3659(97)00124-7
  12. Maeda, H., L. W. Sseymour and Y. Miyamoto (1992) Conjugates of anticancer agents and polymers:advantages of macromolecular therapeutics in vivo. Bioconjuate Chem. 2, 351-353
  13. Minoura, N., S. Aiba, Y. Gotoh, M. Tsukada and Y. Imai (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J. BioI. Mate. Res. 29, 1215-1221 https://doi.org/10.1002/jbm.820291008
  14. Santin, M., A. Motta, G. Freddi and M. Cannas (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382-389 https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  15. Shimura, K. and E. lizuka (1973) 'Tanpakusitsu No Kagaku'. Kyorutsu Shuppan, Tokyo
  16. Tsukada, M., G. Freddi, N. Minoura and G. Allara (1994) Preparation and application of porous silk fibroin materials. J. AppI. Polym. Sci. 54, 507-514 https://doi.org/10.1002/app.1994.070540411
  17. Yeo, J. H., K. G. Lee, H. C. Kim, Y. L. Oh, A. J. Kim and S. Y. Kim (2000) The Effects of PVA/Chitosan/Fibroin(PCF)blended spongy sheets on wound healing in rats. Biol. Pharm. Bull. 23, 1220-1223 https://doi.org/10.1248/bpb.23.1220
  18. Yeo, J. H., M. Demura, T. Konakazawa, T. Asakura, T. Fujito and T. Imanari (1994) Studies on structural analysis of oriented polymers by solid satar 15N NMR II. Kobunshi Ronbunshu 51, 47-51 https://doi.org/10.1295/koron.51.47
  19. Yoshimizu, H. and T. Asakura (1990) Preparation and Characterization of silk fibroin powder and its application to enzyme immobilization. J. Appl. PoIym. Sci. 40, 127-134 https://doi.org/10.1002/app.1990.070400111