• Title/Summary/Keyword: ${\beta}$-Agarase

Search Result 52, Processing Time 0.035 seconds

Structural Features of Enzymatic Hydrolysate of Porphyran Isolated from Porphyra yezoensis (방사무늬김(Porphyra yezoensis)에서 추출한 Porphyran 효소 분해물의 화학적 결합 특성)

  • Park, Jin-Hee;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.630-634
    • /
    • 2011
  • Enzymatic hydrolysate of porphyran from Porphyra yezoensis was prepared by treatment with ${\beta}$-agarase. The hydrolysate was fractioned into molecular sizes of <3, 3-30, and 30-300 kDa using an ultrafiltration membrane. The membrane fractions were further separated into neutral and anionic fractions using Dowex $1{\times}8$ ion exchange chromatography. After hydrolysis of porphyran with ${\beta}$-agarase, 23.2% of the starting porphyran was recovered as a neutral fraction of low-molecular weight (<3 kDa), and 28.9% remained as an enzyme-resistant anionic fraction of high molecular weight (>300 kDa). Desulfation of porphyran and $^{13}C$-NMR analysis of the anionic fraction of low molecular weight (<3 kDa) showed that the anionic fraction has a backbone consisting of 3-linked ${\beta}$-D-galactose units alternating with either 4-linked a-L-galactose 6-sulfate or 3, 6-anhydro-a-L-galactose units. These results indicate that porphryan is a copolymer of two moieties, about 25% of which are composed of neoagarose moieties and 75% as anionic moieties.

Characteristics of $\beta$-Agarase Produced by arine Bacterium Bacillus cereus ASK202 (해양세균 Bacillus cereus ASK202가 생산하는 $\beta$-Agarese의 특성)

  • 김봉조;황선희;김학주;강양순;하순득;공재열
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • Marine bacterium Bacillus cereus ASK202 produced an extracellular agarase (E.C.3.2.1.81) which showed a high level of enzyme activity in the presence of agar and agarose. In the optimal culture conditions, the agarase production increased 7.7 folds compared with the one obtained from the basal medium. Agarase production reached upto 160 units/L after 24hr of cultivation in a modified marine medium at $25^{\circ}C$. The degree of purification increased 31.5 folds with 27.8% yield through freeze drying, DEAE Sepharose CL-6B and Superose 6HR 10/30 column chromatography. The molecular weight of the purified agarase was determined to be 90,000 daltons by gel-permeation filteration. Optimal temperature and pH for the enzyme activity were $40^{\circ}C$ and 7.8, respectively. The enzyme was stable up to $50^{\circ}C$ and at a broad pH range of 5.0-10.0. The $\beta$-agarase was activated by $Zn(NO_3)_2$, and was inhibited by $CuSO_4$ and $SnCl_2$. The Km and Vmax values of this enzyme for agarose as a substrate was $2.4mg/m\ell$ and 13.6 mg/m$\ell$, respectively.

  • PDF

Isolation and Characterization of an Agarase-Producing Bacterial Strain, Alteromonas sp. GNUM-1, from the West Sea, Korea

  • Kim, Jonghee;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1621-1628
    • /
    • 2012
  • The agar-degrading bacterium GNUM-1 was isolated from the brown algal species Sargassum serratifolium, which was obtained from the West Sea of Korea, by using the selective artificial seawater agar plate. The cells were Gram-negative, $0.5-0.6{\mu}m$ wide and $2.0-2.5{\mu}m$ long curved rods with a single polar flagellum, forming nonpigmented, circular, smooth colonies. Cells grew at $20^{\circ}C-37^{\circ}C$, between pH 5.0 and 9.0, and at 1-10% (w/v) NaCl. The DNA G+C content of the GNUM-1 strain was 45.5 mol%. The 16S rRNA sequence of the GNUM-1 was very similar to those of Alteromonas stellipolaris LMG 21861 (99.86% sequence homology) and Alteromonas addita $R10SW13^T$(99.64% sequence homology), which led us to assign it to the genus Alteromonas. It showed positive activities for agarase, amylase, gelatinase, alkaline phosphatase, esterase (C8), lipase (C14), leucine arylamidase, valine arylamidase, ${\alpha}$-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\beta}$-glucosidase, catalase, and urease. It can utilize citrate, malic acid, and trisodium citrate. The major fatty acids were summed feature 3 (21.5%, comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH) and C16:0 (15.04%). On the basis of the variations in many biochemical characteristics, GNUM-1 was considered as unique and thus was named Alteromonas sp. GNUM-1. It produced the highest agarase activity in modified ASW medium containing 0.4% sucrose, but lower activity in rich media despite superior growth, implying that agarase production is tightly regulated and repressed in a rich nutrient condition. The 30 kDa protein with agarase activity was identified by zymography, and this report serves as the very first account of such a protein in the genus Alteromonas.

Purification and Comparison of Properties of the C-Terminus Truncated Agarase of Pseudomonas sp. W7

  • Yoon, Soo-Cheol;Lee, Jong-Hee;Ahn, Sun-Hee;Lee, Eun-Mi;Park, Eun-Mi;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.767-772
    • /
    • 2003
  • Three plasmids derived from the ${\beta}-agarase$ gene (PjaA) of Pseudomonas sp. W7 were expressed in Escherichia coli AD494(DE3) pLysS with lactose as an inducer. These products corresponded to the complete (PjaA) and the two C-terminal truncated (PjaAI and PjaAII) forms of ${\beta}-agarase$. The PjaAI and the PjaAII were originated from exonuclease L treatment from PjaA by deleting 127 and 182 amino acid residues-encoded nucleic acids at 3' region, respectively. The molecular weights of the purified proteins were 71 kDa, 58 kDa, and 50 kDa on SDS-PAGE, respectively. The $K_m$ value of PjaAI was lower than that of the PjaA, and the catalytic efficiency ($k_{cat}/K_m$) of PjaAI was increased to 5 times. The enzyme of PjaAI retained more than 90% activity at $50^{\circ}C$. In contrast to the PjaAI, the remaining activity of the PjaA was only 20% at the same temperature.

Characterization of Agarase from a Marine Bacterium Agarivorans sp. BK-1 (해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명)

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1173-1178
    • /
    • 2019
  • The purpose of this study was to isolate an agar-degrading marine bacterium and characterize its agarase. Bacterium BK-1, from Gwanganri Beach at Busan, Korea, was isolated on Marine 2216 agar medium and identified as Agarivorans sp. BK-1 by 16S rRNA gene sequencing. The extracellular agarase, characterized after dialysis of culture broth, showed maximum activity at pH 6.0 and $50^{\circ}C$ in 20 mM Tris-HCl buffer. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 67, 93, 97, 100, 58, and 52%, respectively. Relative activities at pH 5, 6, 7, and 8 were 59, 100, 95, and 91%, respectively. More than 90% of the activity remained after a 2 hr exposure to 20, 30, or $40^{\circ}C$; about 60% of the activity remained after a 2 hr exposure to $50^{\circ}C$. Almost all activity was lost after exposure to 60 or $70^{\circ}C$ for 30 min. Zymography revealed three agarases with molecular weights of 110, 90, and 55 kDa. Agarose was degraded to neoagarobiose (46.8%), neoagarotetraose (39.7%), and neoagarohexaose (13.5%), confirming the agarase of Agarivorans sp. BK-1 as a ${\beta}$-agarase. The neoagarooligosaccharides generated by this agarase could be used for moisturizing, bacterial growth inhibition, skin whitening, food treatments, cosmetics, and delaying starch degradation.

Production and Application of Recombinant Agarase (재조합 한천 분해효소의 생산과 응용)

  • Kim, Se Won;Hong, Chae-Hwan;Yun, Na Kyong;Shin, Hyun-Jae
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The hydrolysis of biomass to fermentable sugar (saccharification) and to oligosaccharide is an essential process in biotechnology including biorefinery and biofood. Various macroalgae are commercially cultivated in several Asian countries as a useful resource for food and agar production. Agar is a major component of the cell walls of red algae that can be hydrolyzed by agarase. Agarases are classified into ${\alpha}$-agarase (E.C. 3.2.1.158) and ${\beta}$-agarase (E.C. 3.2.1.81) according to the cleavage pattern and grouped in the glycoside hydrolase (GH) family (GH-16, GH-58, GH-86, GH-96, and GH-118) based on the amino acid sequences of the proteins. Agarases have been isolated from various bacteria found in seawater and marine sediments. To increase productivity of the enzyme, a research on recombinant enzymes has been done. The application of recombinant agarase can be possible in the various filed such as energy, food, cosmetics, medical and so on. This paper reviews the source, biochemical characteristics and production system of recombinant agarases for further study.

Antimutagenic activity and Immunologic activity of Agarooligosaccharides Produced by $\beta-Agarase$ from Bacillus cereus ASK 202 (Bacillus cereus ASK 202의 $\beta-Agarase$가 생산한 한천올리고당의 항 돌연변이성 및 면역활성에 관한 연구)

  • 홍정화;윤호경;강민철;윤현주;변대석;공재열
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.4
    • /
    • pp.282-286
    • /
    • 2000
  • Agarooligosaccharides were produced by $\beta$-agarase from Bacillus cereus ASK 202. LD$_{50}$ of Agarooligosaccharides was determined to be 1359 mg/kg which corresponded to GRAS material. Agarooligosaccharides at 5% level exhibited 88.3% inhibition on TA98 and 54% on TA100, indicating agarooligosaccharides to be potent antimutagenic substance. Immunologic activity of agarooligosaccharides was also confirmed by mouse spleen cell culture. Agrooligosaccharides addition of 200 $\mu$l/ml stabilized spleen cells (2.5$\times$10$^{6}$ cells/ml) as compared to control (6.4$\times$10$^4$ cells/ml).

  • PDF

Isolation of an Agarolytic Bacteria, Cellvibrio mixtus SC-22 and The Enzymatic Properties (한천분해세균 Cellvibrio mixtus SC-22의 분리 및 효소적 특성)

  • Cha, Jeong-Ah;Kim, Yoo-Jin;Seo, Yung-Bum;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.157-162
    • /
    • 2009
  • An agar-liquefying bacteria (SC-22), which produces a diffusible agarase that caused agar softening around the colony was isolated from Daecheong lake in Korea. Chemotaxanomic and phylogenetic analyses based on 16S rRNA gene sequences revealed the strain was classified as Cellvibrio mixtus SC-22. The isolate SC-22 showed maximal extracellular agarase activity with 58.5 U/mL after 48 h cultivation in the presence of 0.2% agar. It was observed that the isolate produced two kinds of extracellular and three kinds of intracellular isoenzymes. The major agarase was purified from the culture filtrate of agarolytic bacteria by ammonium sulfate precipitation, anion exchange and gel filtration column chromatographic methods. The molecular mass of the purified enzyme was estimated to be 25 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 7.0 and $50^{\circ}C$, respectively. The agarase activity was activated by $Fe^{2+}$, $Na^+$ and $Ca^{2+}$ ions while it was inhibited by $Hg^{2+}$, $Mn^{2+}$ and $Cu^{2+}$ at 1 mM concentration. The predominant hydrolysis product of agarose by the enzyme was galactose and disaccharide on TLC, indicating the cleavage of $\beta$-1,4 linkage in a random manner. The enzyme showed high substrate specificity for only agar and agarose among various polysaccharides.

Improvement of a Unified Saccharification and Fermentation System for Agaro-bioethanol Production in Yeast

  • Lee, So-Eun;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.32-37
    • /
    • 2020
  • We improved on a unified saccharification and fermentation (USF) system for the direct production of ethanol from agarose by increasing total agarase activity. The pGMFα-NGH plasmid harboring the NABH558 gene encoding neoagarobiose hydrolase and the AGAG1 and AGAH71 genes encoding β-agarase was constructed and used to transform Saccharomyces cerevisiae 2805. NABH558 gene transcription level was increased and total agarase activity was increased by 25 to 40% by placing the NABH558 gene expression cassette upstream of the other gene expression cassettes. In the 2805/pGMFα-NGH transformant, three secretory agarases were produced that efficiently degraded agarose to galactose, 3,6-anhydro-L-galactose (AHG), neoagarobiose, and neoagarohexaose. During the united cultivation process, a maximum of 2.36 g/l ethanol from 10 g/l agarose was produced over 120 h.